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Over the last decade, computational models and simulations have been used to explore whether
words could have initially become grounded and established in the earliest stages of language
evolution through a process of self-organisation in a population. In this paper, a new model of
this family is produced, with two major differences from previous models: the agents’ world
consists of an infinite number of objects, and the agents’ categories have a flexible prototype
structure. These changes result in a more realistic model, but also one which is more likely to
fail. Simulation results revealed that coherent lexicons still emerged, but they were sensitive to
certain model conditions, including the structure of the world.

1. Introduction

Words pose an enigma for language evolution, for they are both fundamental and
complex. On one hand, words constitute the basic building blocks of language,
and on the surface they appear to be simply pairings of form and meaning. In
fact, it makes little sense to speak of linguistic structure or its evolution without
presupposing the existence of words, and their emergence is thus considered to
constitute one of the earliest stages of language evolution (Jackendoff, 1999). On
the other hand, words are distinguished by a set of properties that are not found
together in any other animal species’ signals: they are learned, arbitrary, referen-
tial and numerous. As such, words are unique to humans and cannot simply be
taken as the very starting point of language evolution. Indeed, the evolutionary
emergence of words is an unresolved puzzle.

Moreover, as for other aspects of language, the origins of words must be ex-
plained on at least two levels, biological and cultural. The biological level con-
cerns questions of individual cognitive potential and linguistic preadaptations,
such as a conceptual capacity. This can be partially investigated by comparing
human and animal cognition, and assessing the extent to which animals can learn
human words (Deacon, 1997). However, even if we pin down the necessary pre-
requisites, it is far from clear how the first words actually came into existence
within a population of such individuals. Thus, at the cultural level, we must ex-
plain: how did hominins first invent and agree on words and their meanings?



Exploring this question empirically is difficult, since animals do not sponta-
neously invent words, while humans already have them. Instead, over the last
decade, some researchers have tackled this problem with the help of computa-
tional models and simulations. In particular, Steels (1997) designed a simple
model and showed that a coherent lexicon could emerge through a process of
self-organisation. In particular, a population of individuals equipped with the nec-
essary biological preadaptations gradually converged on a coherent lexicon by en-
gaging in local communicative interactions about objects in a shared environment.
Subsequently, new models have been implemented and have generally supported
Steels’ initial conclusion.

However, the validity of these findings is potentially contingent on the par-
ticular model used. In fact, previous models have tended to use simple worlds
consisting of a small number of pregenerated objects, and conceptual structures
which are efficient but in conflict with accepted psychological theories. It is thus
possible that the models have made it unrealistically easy for a lexicon to emerge,
in which case past results may have been misleading. In order to address this con-
cern, I present here a new computational model, which adopts more complex and
realistic representations (in some respects), and present simulation results.

2. A new model

The current model differs from most previous models in two important respects:
the world consists of an infinite set of objects, and agents’ concepts have prototype
structure. However, the dynamics of the model, in terms of the agents’ interaction
with each other and their environment, broadly follows previous work. For a
detailed description of the model and simulation results, see Laskowski (2006).

2.1. The world

As in previous models (Smith, 2003a), the agents’ world is represented with an n-
dimensional space, where each dimension can be thought to represent a perceptual
feature (e.g., colour, shape, size). Objects are defined as points in this space,
whose dimension values are real numbers between 0 and 1 that identify the extent
to which the objects have the corresponding features.

However, although such a representation system allows for an infinite number
of possible objects, previous models have typically not exploited this and have
instead pregenerated a finite set of objects for each simulation, from which random
contexts were then selected for each interaction (Smith, 2003a). In contrast, in
this model, every agent-world interaction involves the generation of entirely new
objects. As a result, even after thousands of interactions, it is extremely unlikely
that an agent will ever encounter the same object twice. This is important, because
in the real world, no two stimuli are exactly identical, and our concepts are flexible
enough to group objects together and handle novel exemplars.



At the same time, however, the real world is not completely random, but has
some structure. The world is “clumpy” (Smith, 2003b), in the sense that, within
dimensions, some values are generally more likely than others (e.g., animals usu-
ally have even numbers of legs). Also, the world is “correlated”, so that values
across dimensions tend to correlate to some extent (e.g., things that fly tend to
have feathers, and vice versa). Consequently, rather than generating an entirely
random vector each time an object is needed, the objects in this model are gen-
erated pseudo-randomly in accordance with probability distribution functions de-
fined by the model’s “clumpiness” and “correlation” parameters.

2.2. Categories

Following Steels (1997), agents are equipped with sensory channels which de-
tect object dimension values directly and map them onto their perceptual space
(which thus have the same general n-dimensional structure as the world). Unlike
objects, categories are not atomic points. In most models, however, categories are
represented as well-defined regions of the perceptual space, such that objects are
category members if and only if they fall inside the region. This is a simple and
efficient representation system, but it is an implementation of the classical theory
of concepts, which has long been considered obsolete (Murphy, 2002).

In this model, category structure is based on prototype theory (Rosch, 1978),
one of the leading psychological theories of concepts, in which categories have
central members and graded membership. Categories are defined as Gaussian
functions over the conceptual space which assign a degree of membership (a real
number between 0 and 1) to every possible object. The category’s prototype is the
point of maximum membership (1), and the rate at which membership decreases
as one moves away one from the prototype depends on the category’s sensitivity to
each dimension. Formally, the category membership of an object o in a category
c is given by a Gaussian function,
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where ¢ identifies a dimension, with o; being the object value, p; the prototype
value, and s; the sensitivity. This representation is similar to that used by Bel-
paeme (2002), with the main difference being that in that model, the dimension
sensitivities were all rigidly set to one default value.

Although this representation is relatively plausible psychologically, it makes
categorisation of objects more involved. Rather than identifying the category in
whose space an object falls, it is now necessary to find the category which best
fits the object (i.e., the category for which the membership function yields the
highest value). Moreover, a minimum threshold is defined (as a model parameter)
so that an object can only be potentially considered as a member of a category if
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its degree of membership is above this threshold. Figure 1 shows an example of
such a “candidate category” in two-dimensional space for a particular object.
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Figure 1. Category membership in 2 dimensions: membership.(o), the category membership
function for an agent’s category c in a conceptual space of two dimensions, with pg = 0.4, so = 0.05,
p1 = 0.6, and s; = 0.1. The plane shows the value of the minimum membership threshold, and the
dot indicates the object being categorised: since the dot is above the plane, this is a candidate category
for the object.

Each category is also associated with a list of words and association strengths.
Words themselves are atomic tokens with no internal structure. The word with the
highest association strength is the best or most “natural” word for that category,
and is the word that the agent will typically use when communicating about the
category. The list can also be empty, in which case the category has not been
lexicalised.

2.3. Category development

Agents develop and adapt their category systems through interactions with the
world. Each interaction takes the form of a discrimination game (Steels, 1997),
in which an agent is exposed to a context of objects, attempts to find a distinct
category for one of the objects (called the topic), and adapts its category sys-
tem accordingly. Over many discrimination games in different environments, an
agent’s category system gradually grows and adapts to the structure of the world.

Discrimination games have 3 basic possible outcomes: the creation of a new
category, the splitting off of a subcategory, or the adjustment of an existing cat-
egory. If the agent has no candidate categories for the topic object, then it will
create a new category, whose prototype is set to the topic object, and whose initial
dimension sensitivities are a function of how similar the other context objects were



to the topic in the different dimensions. Otherwise, it will check whether any of
its candidate categories are sufficiently discriminating as not to match any of the
other context objects. If there are no such categories, then it takes the most refined
candidate category (i.e., the one with the most sensitive dimensions), and creates
a subcategory of it which is identical with it except for being more sensitive in the
dimension in which the topic differs the most from the other context objects. If
there were discriminating categories, then the topic is categorised with the one for
which it has the highest membership, and this category’s prototype and dimension
sensitivities are adjusted slightly to fit the topic better.

2.4. Lexical development

The other kind of formal game that the agents engage in is the guessing game
Steels (1997), which is actually built on top of the discrimination game. While
discrimination games involve only one agent and do not involve any linguistic
exchange, the guessing game is a communicative episode involving two agents
and a shared environment. The “speaker” agent utters a word for one of the context
objects (the topic), and the “hearer” agent guesses which object the speaker was
referring to. The game is a success if and only if the hearer guesses correctly.
Over many such games between pairs of agents from a population, the agents may
gradually converge on a sufficiently similar lexicon to have generally successful
communication (this is in fact the research question).

The mechanism for each guessing game is as follows. A speaker and a (differ-
ent) hearer are chosen from the population at random, and a new shared context
of objects is generated. The speaker chooses a topic object at random, categorises
it (via a discrimination game), and utters the word in its lexicon with the highest
association score for that category. If it has no word for that category, it randomly
invents a new word. The hearer must find the best match between the word heard, a
context object, and a word-category pair from its own lexicon. It first identifies all
of its categories which have an association for the word. If there are no such cat-
egories, the game fails. Otherwise, it considers each possible category-object pair
from these categories and the context objects, and determines the combination for
which category membership is highest. If the resulting membership is below the
minimum membership threshold, then the game is a failure. Otherwise, the hearer
guesses the object from that pair. If this object is the topic, the game is a success.
Otherwise, the speaker points out the topic to the hearer (non-linguistically), and
the hearer performs a discrimination game on it. Upon completion of the game,
both agents independently update their lexicons, increasing or decreasing specific
word-category association strengths in accordance with the results of the game.

3. Simulations

Simulations were run within this model with three questions in mind. First, would
agents converge on a coherent lexicon, despite the more complex world and cate-



gory representations used in this model? Second, do the simulation results depend
substantially on the specific world structure used? Third, assuming that agents did
converge, how stable would the results be if one varied specific parameters, such
as population and context size?

Each simulation consisted of a large number of guessing games in a fixed
population of agents, who all began with empty category systems and no lexi-
cons. The guessing games were analysed in sets of 100 called epochs, and the
average success rate (the ratio of successful to total number of guessing games)
was tracked for each epoch. The first set of simulations explored whether this
model would work at all in the simplest cases, with population and context sizes
of 2 in a 1-dimensional world. After 200 epochs, regardless of how clumpy the
world was (dimension correlation does not apply of course in a one dimensional
world), communicative success in the final epoch averaged at around 99% over
100 simulations, despite the fact that the agents ended up with large category sys-
tems.

In a 3-dimensional world, the final communicative success was still very
high, despite extreme manipulations of world structure. Four kinds of world
were tested: “random” (dimensions were completely uncorrelated and non-
clumpy), “correlated” (highly correlated dimensions but completely non-clumpy),
“clumpy” (completely uncorrelated but highly clumpy), and “structured” (highly
clumpy and correlated). Final communicative success after 200 epochs was still
very high for all four world structure types, ranging from 96% for the random
world and 99% for the structured world. Agents ended up with around 300 cate-
gories, except for the totally random world, where they tended to have over 500
categories.

In order to explore the scalability of the results and their potential dependence
on a particular world structure, further sets of simulations were conducted. In each
set, one of the main model parameters was manipulated, starting with a base case
of a 3-dimensional world, 2 context objects, and 2 agents. Results showed that
communicative success was significantly affected by manipulations of these vari-
ables, but the extent of the impact depended on the world structure. For instance,
world dimensionality had a very large impact, such that in an 8-dimensional world,
final communicative success rates tended to stay below a dismal 25% in the ran-
dom and clumpy worlds. However, they were still in the high 90’s in the correlated
and structured worlds. Manipulations of the context size had similar impacts, al-
though less drastic. Context sizes of 64 objects still yielded approximately an
80% final success rate in the correlated and structured worlds, but context sizes of
only 16 objects resulted in rates below 50% for both random and clumpy worlds.
The effects of population size changes did not follow the same pattern, however.
Although higher population sizes corresponded with lower communicative suc-
cess rates, the final communicative success rate reached at least around 75% in
all four world structures even with as many as 128 agents, and was best in the



clumpy world (around 90%). Moreover, the communicative success rate curves
also varied in clear ways between the four world types examined. In worlds with
correlated dimensions (i.e., the correlated and structured worlds), communicative
success rose very quickly (e.g., to about 75% with 128 agents), but then flattened
out. In contrast, worlds with clumpy dimensions started off more slowly, but their
communicative success rate curves did not flatten out as dramatically, so eventu-
ally they obtained higher success rates (at least in the clumpy world).

4. Discussion

Despite the use of a more complex model, in which agents never saw exactly
the same stimuli twice and their categories had a continuous prototype structure,
simulation results were generally in line with those of previous work. Under a va-
riety of conditions, populations of agents converged onto coherent lexicons after
engaging through repeated communicative episodes in shared environments. Al-
though each agent had an independent category system and lexicon which started
out empty, communication success rates managed to reach high levels, often close
to 100%. These basic results, then, add support to the idea that a population of ho-
minins equipped with certain cognitive preadaptations could have grounded and
developed a large system of learned, arbitrary, referential words through a series
of local interactions (Steels, 1997). More specifically, they show that the gen-
eral results of previous models cannot be dismissed on the grounds that they used
psychologically implausible category representations. Future models can move in
both directions: they can either develop increasingly realistic category representa-
tions and test whether the basic results will continue to hold, or they can revert to
simpler representations and test more complicated conditions, since it seems that
the choice of representation is not too critical to the results.

However, the simulation results were sensitive to more complex conditions, as
manifested by manipulations of the model’s parameters. As in previous models,
communicative success dropped in simulations in which the context size, popula-
tion size, or world dimensionality was increased. Although this is not surprising,
in some cases the effects were very drastic, and highly dependent on the world’s
structure. Most noticeably, if the dimension values of objects in the world did not
tend to be highly correlated with each other, then large context sizes or large world
dimensionality resulted in enormous drops in communicative success. Moreover,
even in successful simulations, the world structure sometimes influenced the rate
of convergence. These patterns show that the simulation results do not easily scale
up to larger systems, and thus must be treated cautiously. In particular, the world
structure can have large consequences for whether a coherent lexicon will emerge
and how long it will take. This points to the need for future models to choose their
object representations or stimuli carefully and justify their choices.

Returning to the bigger picture, how exactly do these results relate to language
evolution? To answer this, we need to revisit the hypothesis and clearly separate



what exactly is being given a priori in this model, as opposed to what appears
to be emerging (Steels, 2006). We started by asking whether self-organisation
was able to explain how a population of hominins could have “invented” a lex-
icon from scratch. However, it’s important to keep in mind that this hypothesis
is framed within an implicitly substantial environmental and cognitive infrastruc-
ture. We have already seen that the environment that the agents are exposed to
can play a crucial role in determining the outcomes of the simulations. The extent
of the cognitive prerequisites have not, however, been substantially manipulated
here. Agents are instead consistently endowed with unrealistically powerful and
facilitating faculties (and in fact more so in some respects than some other mod-
els), including perfect word production and perception, powerful joint attention,
limitless motivation for communication regardless of success, perfect and equal
perception of objects, and perfect ability to use and interpret non-linguistic refer-
ential methods. All the simulation results of this model have done is to verify the
internal consistency of the argument that, given such abilities, and under simple
conditions, a lexicon could have emerged through a process of self-organisation,
even if agents’ categories had a prototype structure and they were always deal-
ing with new objects. However, this work cannot address the question of whether
the differences between the idealisations and the real phenomena are significant
enough to give misleadingly optimistic results. In order to arrive at that, more
work is needed, including integration with empirical experimental work with both
humans and animals, as well as further modelling developments and explorations.
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