CONSTRAINT-BASED COMPOSITIONAL SEMANTICS

VAN DEN BROECK, WOUTER J. M.

Sony Computer Science Laboratory, 6, rue Amyot,
Paris, 75005, France
wouter@csl.sony.fr

Abstract

The ability to interpret, conceive and learn composite meaning is a pre-
requisite for language use. Any computational model of the emergence and
evolution of grammar needs to consider the emergence and evolution of such
meaning. It needs to explain how interpretation deals with semantic ambi-
guity, how rich meaning is conceptualised, and how it is acquired and con-
ventionalised. Various computational models have been proposed that deal
with one or a few of these aspects. It is however hard to integrate them given
the diverse and often hard to align underlying conceptual and computational
metaphors and paradigms. To remedy this we propose a constraint-based
model of compositional semantics which affords a uniform and grounded
treatment of its interpretation, its conceptualisation and its acquisition.

1. Conceptual inventories

A model of the emergence and evolution of grounded meaning cannot simply
assume the availability of a predicate-based world model. Even the vocabu-
lary of meaning predicates — the conceptual repertoire — has to emerge and
become conventionalised. Furthermore, in a grounded treatment of inter-
pretation, the satisfiability of a meaning predicate is generally not a simple
true-or-false affair.

Earlier work (Steels, 2000) showed how the formation and convention-
alisation of sensorially grounded conceptual repertoires can be computation-
ally modelled. These models generally involve mechanisms for partitioning
some continuous sensory data space, where each partition corresponds to a
concept. The actual partitioning is not pre-defined by e.g. a machine learning
scheme, but rather built up in a constructivist manner. Each agent gradually
constructs both a conceptual repertoire and a lexicon, which maps the con-
cepts on arbitrary forms that can be used to represent them.

The successfulness of a communicative system relies on a sufficient
alignment of both the conceptual repertoire and the lexicon among the popu-
lation. Attaining such alignment is not a trivial problem since agents cannot
directly communicate the nature of the concepts, i.e. the specifics of the



underlying grounded representation. They have to make do with arbitrary
symbols and gradually align the repertoire and lexicon through language use.

The conventionalisation of the repertoire and lexicon emerges from a
number of local, situated interactions. In each of these interactions the par-
ticipating agents play a language game and if necessary attempt to locally
co-ordinate the relevant entries in their repertoire and lexicon. This co-
ordination necessarily involves some hypothesising on what either the in-
tended or interpreted meaning could be, and modification of the existing in-
ventories accordingly.

2. Semantic primitives

The grounding of a conceptual repertoire can be realised using diverse tech-
niques. Steels (1996) for instance uses discrimination trees in a generic
model of perceptually grounded concept creation. Siskind (2001) uses force
dynamics and event logic for grounding the lexical semantics of verbs. Bel-
paeme and Bleys (2005) use point representations of prototypes in their
model of the formation of colour categories, while radial basis function net-
works were used in (Steels & Belpaeme, 2005). Countless other techniques
are or could be considered.

The meaning of even the simplest of sentences involves various types of
concepts. Rather than looking for a single technique that can deal with all
types, we propose a system in which diverse techniques, each well suited for
a particular type of concept, co-operate in a coherent framework. Each tech-
nique is therefore embedded in a semantic primitive. These encapsulate the
procedural details and provide a uniform, abstract interface to the underlying,
concept-specific mechanisms that deal with interpretation, conceptualisation
and learning. Note that we consider these primitives to represent general cog-
nitive capabilities that are recruited for dealing with linguistic needs. As such
we assume them as given and do not consider their evolutionary origin.

Concepts such as categories do not refer to particular entities or phenom-
ena in the world. They are not interpreted "by themselves’ but rather act as
arguments for cognitive operations that fulfil certain functional needs. Most
of our current experiments focus on discriminating one or more entities from
the observed world. Consequently most of the primitives we currently con-
sider somehow contribute to these goals. The bulk of these are what we refer
to as filtering constraints. They take for example a category as arguments
and filter from some source-set those entities for which the category does not
apply. This operation thus takes two arguments, a category and a source-set,
and produces a target-set.

During conceptualisation, the operation of the primitive is inverted. The
goal is now to find a category that accounts for the filtering from a given
source-set to a given target-set, which is a subset of the source-set. A suitable
category is either found in the existing inventory, or invented and added to
it. This operation thus takes a source-set and a target-set as arguments, and
produces a category (or potentially a number of categories).



A semantic primitive thus establishes a relationship between a number
of arguments. Unlike a function however, there exists more than one way
in which some argument(s) can be inferred from the others. Such an om-
nidirectional relationship can be naturally modeled as a constraint as it is
understood in artificial intelligence and operations research. Equally impor-
tant, modelling the primitives as constraints also brings to the table a well
understood framework for combining constraints in a constraint network and
a rich range of techniques for solving so-called constraint satisfaction prob-
lems (Montanari, 1974; Freuder & Mackworth, 1994; Dechter, 2003).

Concepts are traditionally considered to be the predicates. The semantic
primitives we consider can however take concepts as arguments. We could
thus say that our approach amounts to a second-order semantics.

3. Compositional semantics

Language users routinely combine diverse semantic primitives in rich mean-
ing assemblies. By modelling the semantic primitives as constraints we can
model these semantic compositions as constraint networks. Constraints are
linked together in such networks by specifying them over a shared set of vari-
ables. The specification of constraint networks is intrinsically declarative. It
specifies which primitives are used and how they are linked together. It does
not, however, specify a particular control or data flow. The flow in fact adapts
to the availability of bindings for the involved variables.

Let’s consider an example. Figure 1 shows a labelled sensory context
with a number of balls and boxes of varying size. The objective is to devise
a semantic composition that discriminates one of the objects.

Figure 1. labelled sensory context example
7/

Assume we have at our disposal a couple of simple semantic
primitives.  One of these primitives is a filtering constraint as de-
scribed above and filters in terms of basic shape prototypes, i.e. balls
or boxes. It is called filter-set-prototype and it has three slots:
filter-set-prototype(target-set, source-set, prototype).

A second filtering primitive — filter-set-average(target-set, source-set,
comparison) — takes the average of the values of some numerical feature



vector and filters those objects for which the respective feature value is for
example smaller than the average. The comparison argument identifies a fea-
ture channel and a compare function. The comparison with channel ’size’
and function > would for instance correspond to the concept BIG.

3.1. Example A

For our first example we take object 05 in the above scene as the topic. This
topic cannot be unambiguously identified by utterances such as “’the ball” or
the big (thing)” since there are many balls and an equally big box. The big
ball” would do however, but requires the combined use of both aforemen-
tioned semantic primitives.

We actually use two more primitives. The first is unique-element(object,
set) and asserts that the filler of the set slot is a set that contains one element;
the filler of the object slot. It is used to cover the uniqueness of the topic. The
other primitive is equal-to-context(set), which simply asserts that the filler of
the set slot equals the set of objects in the sensory context.

Combining these four constraints in a suitable composite meaning, yields
the constraint network shown in figure 2. All slots are linked to variables.
The four constraints are networked by linking slots of different constraints to
the same variables, as is the case for the variables context, set-1 and set-2.

Figure 2. Semantic program A
{ equal-to-context(context),
filter-set-prototype(set-1, context, prototype),
filter-set-average(set-2, set-1, comparison),
unique-element(topic, set-2) }

Let’s assume that the grammatical parsing of an utterance such as “the
big ball” yields this semantic program plus the bindings: prototype «<— BALL
and comparison < BIG, which are returned by the lexical look-up of “ball”
and “big” respectively. No other variable can be bound for now.

The full interpretation of this composite meaning is obtained by resolving
the constraint network, i.e. finding the set of bindings, one for each variable
in the network, that does not violate any of the constraints in the network,
or in other words, solving the constraint satisfaction problem. We do so by
means of constraint propagation.

First the equal-to-context constraint binds the context variable to the com-
plete set of objects in the scene, i.e. {o0l,02,03,04,05,06}. Given the
bindings for both the context and prototype variables, the filter-set-prototype
constraint can infer a binding for sez-1, i.e. the set of ball-like objects:
{02, 04, 05}. Given this binding and the comparison, the filter-set-average
constraint can now infer a binding for set-2, i.e. {05}, since 05 is larger than
the average size of the three balls. Finally, unique-element can correctly bind
topic to {05}, as such yielding the intended topic.



3.2. Learning

Say we hear “the froople ball” but do not know the meaning of “froople”. If
we signal our misunderstanding to the speaker, and the speaker manages to
draw our attention to the intended topic through other means, such as point-
ing, an opportunity for learning presents itself. We take the same semantic
composition and fill in the known bindings: prototype «<— BALL and topic
05. This network can now be resolved.

Applying the unique-element constraint gives the binding ser-2 < {05}.
Applying the equal-to-context and filter-set-prototype constraints gives set-1
— {02, 04, 05}. Given these bindings the filter-set-average primitive can try
to abduct a comparison that could account for the filtering from the set-1 to
set-2. The comparison with channel ’size’ and function > clearly applies. If
this concept already exists in the inventory, a new hypothetical entry between
this concept and the form “froople” can be added in the lexicon. If it was not
conceptualised before, it can also be added in the conceptual inventory.

3.3. Example B

As a second example we will assume the same context, but take 02 as the
topic. We cannot easily find a semantic program that discriminates this topic
using the same constraints as before. Let’s therefore introduce an additional
semantic primitive: filter-set-relation(target-set, source-set, relation, refer-
ent). This primitive filters all elements from the source-set for which the re-
lation does not apply with respect to the referent. The relations we consider
here are spatial relations, such as NEXT-TO, or IN-FRONT-OF. This enables
us to construct the semantic composition that corresponds to “the ball next to
the big box”, which properly discriminates the intended topic. The resulting
composition is shown in figure 3.

Figure 3.  Semantic program B

{ equal-to-context(context),
filter-set-prototype(set-1, context, proto-1),
filter-set-average(set-2, set-1, comparison),
unique-element(referent, set-2),
filter-set-prototype(set-3, context, proto-2),
filter-set-relation(set-4, set-3, relation, referent),
unique-element(topic, set-4) }

For a regular interpretation the bindings are: proto-1 «+— BOX, comparison
< BIG, proto-1 <+ BALL, and relation <— NEXT-TO. Resolving the constraint
network will first bind referent to ol like in the previous example, and set-3 to
the set of balls, i.e. {02, 04,05}. Given these bindings the filter-set-relation
primitive can now select from sez-3 those elements which are ’next-to’ the
referent and bind this set, i.e. {02}, to ser-4, giving us the correct topic.



4. Goal-directed construction of semantic compositions

The conceptualisation of the kind of composite meaning discussed above is
realised as a process that constructs a constraint network. The input for this
process is a communicative goal, e.g. ’discriminate topic X in the sensory
context’, and an inventory of primitive constraints. The resulting constraint
network has to be coherent and fulfil the given goal when interpreted by the
hearer. In order for the hearer to be able to properly interpret the decoded
composition, all arguments that cannot be inferred should be expressed in
the utterance. These essential arguments thus have to be representable in
language, for instance as lexical forms.

Finding a suitable constraint network given some goal is a combinato-
rial problem. Blindly trying to link together various constraints in arbitrary
configurations and checking if the results satisfy the requirements is not a vi-
able strategy. We propose a structured, goal-directed strategy to manage the
combinatorial explosion.

For a semantic composition to be useable, it must be resolvable given the
essential arguments. All other bindings in the solution must be directly or in-
directly inferable from this select set of bindings. In other words, there must
exist a directed, non-cyclic dependency network among the bindings which
reflects the inferential flow from the essential source bindings to the binding
or bindings that represent or otherwise contribute to the communicative goal.
The process of creating an appropriate semantic composition can be guided
by this requirement.

Let’s for example consider the construction of the semantic composition
shown in figure 2. The initial goal is to discriminate object 05 from the sen-
sory context shown in figure 1. We start the composition by introducing a
variable and bind the topic to it. This binding is meant to be inferable dur-
ing interpretation, so we need to add a constraint that can infer the binding.
Most constraints however hold over more than one variable, which will need
to be added. The bindings for these new variables also need to be either es-
sential bindings or be inferable themselves. Introducing a new constraint to
fulfil a goal might thus introduce new sub-goals, which need to be fulfilled
recursively.

Let’s say we add unique-element(topic, set-2) to infer the topic. This
introduces a new sub-goal: find support for (the binding of) set-2. Adding
filter-set-average(set-2, set-1, comparison) fulfils this sub-goal, but yields
two new sub-goals: set-1 and comparison. The comparison concept can be
expressed in the utterance, but the set will have to be recursively dealt with.

A complete overview of the composition process is shown in figure 4.
Each row represents a step in the process, starting with the initial step in the
first row. The first column gives the goal for each step. The second column
shows the “action’ taken to fulfil the goal, which is either a new constraint or
an argument that has to be expressed in the utterance. The third column lists
the sub-goals entailed by adding a constraint. Each of these sub-goals needs
to be fulfilled in one of the subsequent rows.



Figure 4. Goal directed composition

goal constraint or argument subgoals
topic unique-element(topic, set-2) set-2
set-2 filter-set-average(set-2, set-1, comparison)  set-1, comparison
comparison BIG -
set-1 filter-set-prototype(set-1, context, prototype) = context, prototype
prototype BALL -
context equal-to-context(context) -

The composition process starts with the initial goal and ends when all the
sub-goals that were introduced along the way, are fulfilled. For each goal
there might be several constraints that could infer that goal. The composition
shown in figure 4 thus represents but one particular path of potentially many.
All these paths form a tree. Various strategies can be used to more efficiently
explore this tree. We for instance apply an eager search strategy based on
a heuristic that favours smaller compositions, with less unfulfilled goals and
a smaller amount of essential arguments. We prune branches that involve a
cyclic dependency and try to prune inconsistent branches as soon as possible
by propagating the constraints where possible after each extension.

Finally we would like to note that this composition mechanism can also
deal with situations in which the structure of the semantic composition was
not fully understood. It can be used to hypothesise on a plausible completion
of an incomplete network by adding constraints to account for bindings not
yet accounted for in exactly the same way as outlined before.

5. Conclusions

In this paper we showed how modelling compositional semantics in terms of
constraints and constraint networks, offers a uniform framework for dealing
with its interpretation, acquisition and conceptualisation.

Grounded semantic primitives not only perform cognitive operations like
categorising a set of visual stimuli in terms of categories, but also extend
the conceptual inventory. This way the acquisition of a conceptual inventory
is completely integrated in the process of conceptualising and interpreting
language. It is therefore possible to have a strong interaction between the
two.

Encapsulating the procedural details of these cognitive operations as
primitives that expose a uniform interface, allows experimenters to com-
bine diverse techniques for handling specific concept types, instead of being
forced to apply a one-size-fits-all scheme. The representation of semantic
compositions as constraint networks does not entail the specification of a
particular control or data flow. This not only makes a closer fit to natural



languages, but also allows for data flows to adapt to the differences in avail-
ability of information in conceptualisation, interpretation or learning.

Finally the proposed model does not favour any particular model or for-
malism concerning the emergence and evolution of language in general, or
syntax in particular. It should thus be adoptable in a wide array of experi-
mental and theoretical settings, while drawing upon a well-developed body
of knowledge on constraint processing from the fields of artificial intelligence
and operations research.
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