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It is widely assumed that, over their evolutionary history, languages increased in complexity
from simple signals to protolanguages to complex syntactic structures. This papers investigates
processes for increasing linguistic complexity while maintaining communicability across a pop-
ulation. We assume that linguistic communicability is important for reliably exchanging infor-
mation critical for coordination-based tasks. Interaction, needed for learning others’ languages
and converging to communicability, bears a cost. There is a threshold of interaction (learning)
effort beyond which convergence either doesn’t pay or is practically impossible. Our central
findings, established mainly through simulation, are: 1) There is an effort-dependent “frontier
of tractability” for agreement on a language that balances linguistic complexity against linguis-
tic diversity in a population. For a given maximum convergence effort either a) languages must
be simpler, or b) their initial average communicability must be greater. Thus, if either conver-
gence cost or high average communicability over time are important, then even agents who have
the capability for using complex languages must not invent them from the start; they must start
simple and grow. 2) A staged approach to increasing complexity, in which agents initially con-
verge on simple languages and then use these to “scaffold” greater complexity, can outperform
initially-complex languages in terms of overall effort to convergence. This performance gain
improves with more complex final languages.

1. Introduction

Language evolution studies generally assume that the developmental trajectory
for human languages followed stages from simple signaling systems to holistic
protolanguages to simple compositional languages, and finally to the lexically and
syntactically complex languages known today. If languages indeed grew from the
simple to the complex, several questions need answering; two of these are:

• Could complex languages ever emerge early? Why or why not?

• Local, individual innovations that increase linguistic complexity also cre-
ate linguistic diversity and, at least temporarily, reduce communicability.
How can a population maintain the communicability of its language while
accommodating the diversity of innovation?



While inspired by the enduring issues of human language evolution, we are
primarily interested a design stance: evolving artificial languages for artificial
agents. We need to discover general principles of language emergence that also
cover automated agents with different sensorimotor, cognitive, and/or interac-
tional possibilities from humans, their evolutionary predecessors, or animals. We
believe, in fact, that language evolution is a model problem for issues that arise in
many kinds of distributed semantic systems, including Web semantics, resource
description-discovery (metadata) systems, cartographic systems, and biological
systems. One case in point is the intentional creation and ongoing revision of
XML-based semantic web languages. These can vary in complexity (number of
terms, syntactic categories, etc.), and they exhibit frequency-dependent “network
effects”: any single language in the space has little value until a large popula-
tion of agents can interpret and apply it. In this situation also, the two questions
above are important: communities must converge on shared languages quickly,
and ongoing linguistic innovations should only minimally disrupt the use of the
language.

1.1. Assumptions

We are interested in artificial agents that operate continuously over long periods of
time in complex worlds, performing tasks that require coordination. The value of
(reward from) successful coordination drives information exchange, which in turn
drives agents to create and share languages. While rewards actually come from
doing things with shared information, we can usefully attribute at least part of
the reward to the language itself. Thus a language that allows agents to exchange
more critical information or to coordinate better has a higher value.

We assume that agents need to talk about each other about conditions and
events in their worlds, and this talk is valuable in the sense above. The ability to
describe and distinguish objects and actions are the fundamental kinds of infor-
mation needed for coordination and increased fitness.

We consider task complexity to be information-theoretic. That is, tasks differ
in complexity on the basis of how many different objects, situations, and actions
they involve, and how much information is needed to reliably distinguish these
objects, situations, and actions. This becomes important later when we discuss
how to measure complexity of language. Agents that can successfully complete a
greater range of complex tasks in a greater range of complex situations are more
fit. Said another way, the ability to handle greater task diversity and complexity
are fitness-increasing traits.

Since successful agent communication is necessary for success in the tasks of
interest, and since what needs to be communicated for simple tasks is different
(“simpler”) than what needs to be communicated for complex tasks, agent com-
munication languages have to vary with task complexity. For agents to become
competent at more complex tasks, they need more complex languages. This means



that languages have to change in complexity over time.

2. The complexity-diversity-effort frontier

Since collective activity is ongoing and must remain so while complexity grows,
we have a difficult problem: how do agents change their languages from simple to
complex while maintaining communicability? Language variation must originate
at the individual level (Croft, 2001). If this is so, then as an agent originates a
change from a fully communicative language, the agent will become less commu-
nicative with others, thus less effective in coordinated tasks. For language to grow
in complexity this means there is a trajectory through which agents must somehow
increase complexity (decreasing communicability), then then increase communi-
cability again. This disruptive shift characterizes each increase in complexity.

Figure 1. Conjectured tractability frontiers.

Computational tractability is
an issue for this complexity
growth. We hypothesize that
given any set of agents with
a fixed cognitive structure and
a set of tasks (need for lan-
guage), there exists a frontier of
tractability for convergence to a
common language. Informally,
for a set of languages L of a
given complexity C, greater ini-
tial diversity in the subset l of L
spoken in the population will im-
ply greater time to converge the
population to full communicability. Similarly, for a given degree of initial lin-
guistic diversity D, higher linguistic complexity implies greater time to converge
the population to full communicability. Let us limit the available convergence
time (i.e., effort to converge) to some amount E and plot C = f(D, E), where
f means “given a set of agents whose set of languages exhibits diversity D, let
f(D,E) equal the maximum linguistic complexity for which the population will
converge within E units”.

Then we will see a curve with the following property: Any complexity-
diversity point “under” the curve limited by E will converge in time bounded
by E while any point “above” the curve limited by E will not. (See Figure 1.)

E establishes a tractability frontier of complexity and diversity. If languages
are higher in complexity, this lowers the limit of diversity the population can sus-
tain and still tractably converge. As a result, for languages that are higher in com-
plexity, agents must make fewer, smaller innovations (introduce less diversity) if
they are to converge within some limited time.



Similarly, for a population to exhibit greater linguistic diversity and still have
the possibility of converging tractably, their linguistic complexity must be limited.
If a population is going to be highly innovative linguistically, introducing great
diversity, then its members had better have a relatively simpler language if they
expect to converge tractably.

Throughout this discussion we focus on languages as lexical matrices. A study
of convergence frontiers for structured, compositional languages (languages with
a grammar) is left for future work.

3. Implementation and experiments

We demonstrate the existence of tractability frontier through an experiment. Each
agent represents its language as a Form-Meaning Association Matrix, which is a
likelihood matrix that explicitly stores the joint likelihood of the forms and mean-
ings. Forms are symbols in the language and meanings are concepts that can be
talked about. For the present, we assume the simplest possible setup: the num-
ber of forms and meanings is equal, and the set of forms and meanings is shared
among all the agents, so they are only tasked with achieving consensus on the
associations between forms and meanings.

The language game proceeds through random interactions between agents. We
assume a “full information” scenario, where agents provide form-meaning pairs
to hearers. A speaker generates a form for a given meaning, j, by finding the
element in column j of its form-meaning matrix, that has maximum value. This
is a maximum likelihood rule for language production.

If σij is the current value of the hearer’s form-meaning matrix for the given
symbol-meaning pair, it gets updated as follows: σij = η · σij + (1 − η). Addi-
tionally, all the values in row i are updated as σic = η · σic ∀c #= j, and all values
in column j are updated in the same way, σrj = η · σrj ∀r #= i. This “lateral
inhibition” is meant to discourage synonymy and polysemy (Vogt & Coumans,
2003).

3.1. Measuring linguistic diversity

In order to understand the limits of this process, it is necessary to understand how
much diversity can be introduced in a population such that the population can still
return to (or maintain an adequate degree of) communicability to be successful in
the ongoing tasks they face.

There are several principled ways to measure linguistic diversity. Greenberg’s
index (Greenberg, 1956) measures diversity as the probability that a pair of ran-
domly selected individuals from the population do not speak the same language.

A = 1−
∑

i

p2
i , (1)



where pi is the probability of encountering a speaker of language i. Greenberg
also suggests modifying this formula to take into account the similarity between
languages, thus,

B = 1−
∑

ij

pipjrij , (2)

where rij is a measure of the overlap between languages i and j. A and B are
both measuring communicability (or rather, the lack of it) in the population. We
say a population is converged if the communicability is 1, i.e. diversity is 0.

Another measure, more popular in genetics, is known as the Jensen-Shannon
diversity (see, e.g., Grosse et al., 2002), given by,

J = H(λ1P1 + λ2P2 + . . . + λnPn)−
∑

i

λiH(Pi), (3)

where
∑

i λi = 1, and the Pi are the probability distributions describing the lan-
guages (form-meaning associations). H is the Shannon entropy function. Since
languages for our agents are defined as the joint likelihood matrices for forms and
meanings, J measures the diversity in the corresponding probability distributions
which are obtained by normalizing the form-meaning matrix. When all distribu-
tions are identical, J = 0.

The difference between Greenberg’s index and Jensen-Shannon diversity is
analogous to the difference between phenotype and genotype in biology. J is a
measure based on the underlying probability distribution, and A and B are more
“behavioral” measures as they directly evaluate communicability. When J = 0,
A and B are also 0, and when J attains its maximal value, A and B equal 1.
However, it is possible to have perfect communicability even if the underlying
distributions are not identical, since communicability depends on the maximum
likelihood interpretation.

3.2. Generating diversity

In order to evaluate the tractability frontier, our problem is, in a sense, the oppo-
site. We do not need to measure the diversity of a given linguistic population, but
to generate a population with a given diversity. We follow a simple procedure.
We initialize the agents with identity matrices for their form-meaning mappings.
Then we devolve this perfectly converged state by adding a uniform random vari-
able, drawn from a range [0, ε], to each value in the matrix. It turns out that the
noise level, ε, is very strongly correlated with Greenberg’s index and the Jensen-
Shannon diversity. In other words, by increasing ε, we can smoothly and (nearly)
linearly increase the diversity of the population according to these two measures.
We have confirmed this fact through careful simulation, though those results are
not presented here for lack of space.



3.3. Linguistic Complexity

Complexity is determined by both the complexity of the forms and complexity
of the meanings. McWhorter has defined four criteria for the evaluation of the
complexity of a language (McWhorter, 2001), based on phonology, syntax, gram-
maticalization, and morphology. Only the grammaticalization criterion makes ref-
erence to meanings, however. It says that the language is more complex if it makes
finer semantic and pragmatic distinctions.

The language of an agent also reflects its cognitive capabilities, and an agent
capable of making greater cognitive distinctions will have a more complex lan-
guage simply by virtue of being able to express more meanings. This is an
information-theoretic notion of complexity, as discussed earlier, and should be
included in a measure of linguistic complexity. This is understandably hard to
do for natural languages, but is the criterion we use in our simulations because
artificial agents, in particular, can differ widely in their cognitive capabilities and
characterizing this distinction is essential in a discussion of language evolution.

3.4. Experimental result

Figure 2. Time to convergence vs. complexity and diversity.

We measure effort as num-
ber of iterations required to
converge. We initialize a
population of ten agents with
varying levels of diversity, by
varying the noise level as de-
scribed above. We also vary
the complexity of the lan-
guage by varying the number
of meanings. Then we run
the language game for each
initial condition and evaluate
the number of iterations nec-
essary to converge to a communicability level greater than 0.9. This gives us a
three-dimensional graph, which is shown in two dimensions in figure 2, with a
color coding for time to convergence. We see a clear emergence of frontiers, de-
marcated by regions of different colors, confirming our hypothesis from fig. 1.

4. Scaffolding and staged learning

This leads us to the notion of scaffolding as a means of overcoming the diver-
sity/complexity frontier established by E. Scaffolding is a general learning strat-
egy that humans use, and its existence and efficacy has been reported for language
learning both in the psychological literature (Iverson & Goldin-Meadow, 2005)
and in simulation work (Elman, 1993).



Lee, Meng, and Chao (2007) provide a model of “staged learning” that cap-
tures the idea of scaffolding . Agents a) constrain choices, b) act within constraints
until c) no novelty appears, then d) lift some constraints, and repeat. Constraints
temporarily reduce the agents’ decision space. When quiescence occurs at one
stage, strategically-chosen constraints are lifted. (This implies that staged learning
is order-dependent or at least that there are more and less effective developmen-
tal trajectories.) Learning commences again in an extended decision space, but
one that is now biased by the structures and generalities learned in prior stages.

Figure 3. Moving from Stage 3 to Stage 4 uncovers a row and
column of the matrix. The grey areas are hidden to the agent
until it reaches that stage. δ = 1

We created a similarly staged
version of our experiments as
follows. We choose a max-
imum number of meanings,
n, that the population has to
converge upon. However, the
agents do not consider all of
these meanings initially.

They start at Stage 1. The
the number of meanings that
are active (used in language
games) is a function of the
stage number. The complex-
ity step size δ represents how
many new meanings to make
active per stage. Thus the
number of meanings active at
Stage i is i × δ. If the sys-
tem is in Stage 4 and δ = 4 there are 16 active meanings. Each agent is ini-
tialized with a m × n lexical matrix. However at each stage i, an agent only
sees part of its full lexical matrix, of size iδ × iδ. As the stages progress more
of the agents’ lexical matrix is revealed, as illustrated in figure 3. The system
changes stages based on the communicability of the population. Let θ be the
stage transition communicability threshold. When the population has commu-
nicability ≥ θ in stage i, it has converged to within θ on iδ × iδ forms and
meanings. It then moves to the next stage and uncovers new meanings for each
agent. At this transition point, (i − 1)δ meanings have already been converged
upon (to within θ), and δ meanings are new. These earlier convergence deci-
sions bias agents’ learning choices for the new, larger matrix. This is scaffolding.
To confirm the value of staging, we repeated the earlier experiment with staging
added, evaluating the new tractability frontier for varying complexity and diversity
levels. Note the axes of this plot go much farther than the axes in figure 2. In
fact we started each simulation with 10 meanings and 10 forms because smaller
matrices converge very quickly. Even with higher initial noise levels and number



of meanings going up to 30, we see that the population converges in a fairly short
amount of time. Staging has pushed out the tractability frontier greatly.

5. Conclusions

Figure 4. Tractability for staged learning.

We have shown the need
for scaffolding in language
learning to be a fundamental
requirement arising from the
tradeoff between complexity
and diversity. The interaction
between complexity and di-
versity leads to the existence
of a tractability frontier that
prevents convergence in rea-
sonable time if the initial di-
versity is too high for a given
complexity of language (or
vice versa). However, by learning in stages, it is possible to attain convergence
even on complex languages that would otherwise be beyond the tractability fron-
tier.
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