REMOVING ‘MIND-READING’ FROM THE
ITERATED LEARNING MODEL

S.F. WORGAN AND R.Il. DAMPER

Information: Signals, Images, Systems (ISIS) ResearchpGro
School of Electronics and Computer Science
University of Southampton
Southampton, SO17 1BJ, UK.

{sw205r |ri d}@cs. soton. ac. uk

The iterated learning model (ILM), in which a language cormaésut via communication
pressures exerted over successive generations of agastatttacted much attention in recent
years. Its importance lies in the focus on cultural emergeas opposed to biological
evolution. The ILM simplifies a compositional language as tompression of an object
space, motivated by a poverty of stimulus—as not all objectee space will be encountered
by an individual in its lifetime. However, in the original M, every agent ‘magically’ has
a complete understanding of the surrounding object spab&hwveakens the relevance to
natural language evolution. In this paper, we define eachtagmeaning space as an internal
self-organising map, allowing it to remain personal aneptally unique. This strengthens the
parallels to real language as the agent’'s omniscience aimdl-reading’ abilities that feature
in the original ILM are removed. Additionally, this impravent motivates the compression of
the language through a poverty of memory as well as a povérsgiraulus. Analysis of our
new implementation shows maintenance of a compositiotalotsired) language. The effect
of a (previously-implicit) generalisation parameter iscahnalysed; when each agent is able to
generalise over a larger number of objects, a more stablpasitional language emerges.

1. Introduction

Hypothesising that language is a system of compressiormltiv adjust itself so
that it can be learned by the next generation is a relatively approach in the
field of linguistics. Several important simulations (KirByHurford, 1997; Kirby,
2001, 2002; Brighton, 2002; Smith, Kirby, & Brighton, 20083ve illustrated
its potential and provide an alternative to establishedti@accounts of language
(Chomsky, 1975; Bever & Montalbetti, 2002; Hauser, Chomgkifitch, 2002).
Currently, existing versions of this iterated learning miodLM) suffer from a
number of shortcomings. This paper will address some oéthdsle maintaining
the positive features of the model.

In the classical ILM, an agent selects an object from its remrnent and
produces a meaning-signal pair that is then directly peeceby a listener. The
pairing is formed through a weighted connection between aning node and



a signal node, and is then used to adjust the weighted caansdbetween
the meaning space and the signal space of the listening .adenthis way,
a language evolves across a number of generations. If easht & only
given the associated signal for a small subset of possitjkcts it is forced to
generalise across the remaining object space, so promitinéprmation of a
stable compositional language.

2. Shortcomingsof the Iterated L earning Approach

Inthe ILM, the agents’ meaning space loosely representstimel’ of a language
user. In many respects, however, this analogy breaks dosveaeh agent is
created with a perfect knowledge of the surrounding objeats, which is never
found in reality. Rather, we need to consider the nature efdhject space and
the agents’ ability to generalise across it. Also, a leagrigent directly observes
each meaning-signal pair, and this introduces an elemémind-reading’, as the
learner now knows exactly what the adult teacher was thqnkinen it produced
a signal. Obviously, this weakens the ILM'’s credentials ssraulation of cultural
language evolution. Kirby (2002, p.197) himself acknowgesl this criticism,
writing “the ready availability of signals with meaningsatly attached to them
reduces the credibility of any results derived from theselehs’, whereas Smith
et al. (2003, p.374) write: “This is obviously an oversinfightion of the task
facing language learners.”

In this paper, we aim to develop a new ILM to address theskisrits. Let
the iterated learning approach yield a language, able toritbesevery object
found in the object spacey/, through a process of compression, governed by a
form of generalisation. This compression is possible byniag a compositional
language, which describes common features of objects isghee. Figure 1(a)
illustrates how a compositional meaning node is able ghrtadefine a number
of objects. In the original ILM, this is automatically deteined by the number of
values,V, in the object space, e.g., in Fig. 1(a) each compositioraning node
is able partially to defin® = 4 objects. An implicit generalisation parameger
then determines the proportion of thegevalues that each meaning node can
generalise over: in Fig. 1(a), = 1. This parameter, ignored in previous work,
impacts significantly on the structure of the final compositil language. To
understand the role of the environment in the emergencengulzge, we need
to consider what happens when the generalisation parameasenot equal to 1.
Figure 1(b) shows the compression which results from hglttie generalisation
parameter, which is now made explicit. Here, we see that 4ninganodes—
rather than 2 as previously—are now required to specify #mesnumber of
object nodes (i.e., poorer generalisation). In this exampl= 0.25 would
correspond to a holistic, non-compositional language (i@ generalisation).

Having acknowledged the role of this (previously-implicifeneralisation
parameter, we are now able to remove the ‘mind-readingrattsbn from our
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Figure 1. In an ILM, the object space is defined by the numbeokjéct valuesV in each of
F dimensions. In this examplé; = 2 andV = 4. In the original ILM in (a), the generalisation
parametery is implicitly set to 1. By varyingy as in (b), wherey = 0.5, we can vary the level of
compression that each compositional meaning node carvachie

simulations. To do this, we will define the agent’s meaningcgpas a self-
organising map (SOM) ang as a radius around a selected object, removing
the two criticisms of the ILM stated above. That is, an agemtlonger has
complete and perfect knowledge of the object space, andttioiwledge remains
private so that each agent develops a different, individuaderstanding’ of its
linguistic environment.

3. Self-organising maps and iterated learning

Self-organising maps (Kohonen, 1982) have previously e to good effect
to model emergent phonology (e.g., Guenter & Gjaja, 1996¢&yar, 2005;
Worgan & Damper, 2007). In the present work, SOMs offer a waynbdel
each agent’s unique and private understanding of its emviemt. Our model
is based on the neural network model of Smith et al. (2003f. Se2.1), but
with important differences motivated by the discussion ett®n 2 above and
described explicitly in this section.

In this environment, an object can be defined as, &g= {1, 2}, and in the
meaning space asj = {1, 2}. Equivalently, it can be defined as the pair:

nj = {1,%}
i1 = {*32}

where= represents a wildcard. In this exampig; forms a holistic signal, as
this individual meaning node is only capable of defining obgect, whereasv|
and mvj 1 together form a compositional signal, as features from thiea
space are defined by the two meaning nodes and can be combidefirte an
individual object. These feature definitions can then be irsether combinations
to describe other objects. We will maintain this aspect efttiaditional ILM by
redefining generalisation as a variable radius around apetobject.



The weightings on the connections between nodes of the mgaaid
signal spaces determine the mapping from meaning-toisagrhfrom signal-
to-meaning. The object spack’, that each agent talks about is represented by
a simple coordinate system and a subset of these coordisadeswn from the
object space according to a uniform probability distribati Each object in turn
is mapped directly to the appropriate meaning node in thatsgmeaning space.
The signalsl;, are generated by mapping from this meaning space to thalsign
space, and are represented as characters from an alpbadeet,

li={(s1,%,...,S,...,9) S €Z,1<I| <Inad (1)

from which it is clear that we need a sufficient number of sigieaes in the signal
layer to express any of the nodes in the meaning space.
Formally, the object space is:

N = {Xl,XZa”',Xka'-',XN}
with x¢ = {(f1, f2,..., fi,..o, fF) 1< fi < V)

When required to produce an utterance, an agent will sefeabgectx,, and each
node in the meaning space; competes to have the shortest Euclidean distance
from this point. Formally, if we define the closest noder&sy) then:

m(xx) = argminx —m;jll, j=1,2---,I 2)
]

The winning node is then moved closer to the selected poattebdefining the

object space as a whole. In addition, neighbouring nodesnared somewhat
closer to the object, allowing the network as a whole to repméthe experienced
object space. The extent to which these nodes move is detedrby a Gaussian
function,hj k, centred around the selected object (Haykin, 1999, p. 449):

LA
hj k = exp 27 witho =y 3)

whered; i is the distance between the winning neujamnd the excited neurda

To form a compositional signal, we build valid decompositaets from the
meaning space, governed by the generalisation parametéfe can then define
a set, Kk, containing all of those meaning nodes which fall inside tadius
aroundxy. Formally:

Kk ={mj [Ixk =mjll <y} (4)

Considering all possible decompositions in turn, the agdhpick the signal,
with the highest combination of corresponding weight valaecording to:
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g({lin) =D D" o(K(X)j) - Wi (x); Ns; (5)

i=1j=1

which is similar to Smith et al.’s equation on p. 380, in thaK (x)j) “... is a
weighting function which gives the non-wildcard proportiof ...” K(x)j, so
favouring compositional meaning nodes.

All meaning and signal nodes that correspond to a possilzierdposition of
the object are activated, with activatioas andam,, respectively. If two active
nodes are connected, the weight on that connection is isedealf there is a
connection between an active node and an inactive node tightwe decreased.
Weights between two inactive nodes remain unchanged. Hmritg displayed
by this Hebbian network can be formalised as follows:

+1 iff ag = am; =1
Awij =1 -1 iff as # am, (6)
0 otherwise

where Awjj is the weight change at the intersection betwegrand m;,
s € Nsandmj € Nm. As shown by Oliphant (1999), this kind of learning is
required for agents to acquire a language system in the liakhéwork.

While listening to each utterance, the weight values of fenaare adjusted—
extending its knowledge of the current language. This hygsit allows it to
generalise to objects it has not encountered before, gl a meaningful
expression. Therefore, a poverty of stimulus causes trgubge to generalise
across an object space. Additionally, by having a limitechbar of nodes form
the meaning space, the agent does not have an infinite meegoyrce to draw
upon, forcing compression through limited memory as weliraged stimuli.

Using this model, we will varyy in order to assess how this affects the
stability, S, of the final compositional language:

S
S S+ S @
where&: represents the proportion of compositional languagessugfines the
proportion of holistic languages, which emerge over calttime. The higher
the value ofS, the more likely is a compaositional language to emerge—sathS
et al. (2003, p. 377).

In the new model, each agent’'s meaning space is undefinedtattaindomly
initialised) and will need to learn the structure of the @bfpace as each object is
encountered. Consequently, the meaning space graduatigrebends the object
space but also remains potentially unique to each agentddfeeent subset of
objects is encountered.




4. Reaults

We first ran the new SOM iterated learning model under the semnelitions
as the previous implementation, see Figure 2. As we can see tfrie results,
compositional languages emerdg> 0.5) under a similar set of circumstances
to Smith et al.’s (2003) previous implementation. Therefdine requirements for
a tight bottleneck and a structured meaning space remalmsiimiplementation.

(c) 50% (d) 90%

Figure 2. Stability of the resulting languages when eaclmiaigeexposed to some percentage of the
object space (Smith et al’s “bottleneck” parameter).

Next, we considered the effect of varying the generalisgparametery , as
shown in Figure 3. The higher the generalisation, the greage stability, S,
of the compositional language and, conversely, the lowergémeralisation, the
lower the stability.

Figure 4 shows how structuring the object space allows eagdming node
to generalise over a greater number of objects, increabmgtabilityS. As we
can see, the potential generalisation of each meaning souat ias effective, as
fewer objects are located in each generalisation area. di@asitional meaning
node can only generalise across two objects in the unstedttobject space
of Fig. 4(b).



Figure 3. Stability of the resulting languages when eacimiaigeexposed to 10% of the object space,
with different degrees of generalisation: {a)= 2, (b)y = 0.5.
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Figure 4. In a structured object space, each meaning noderajises over a greater number of
objects.

5. Conclusions

In this paper, we have addressed some criticisms of the kmellvn iterated
learning model of cultural language emergence, most nptakl‘mind-reading’
aspect of earlier ILM implementations. This was achievedgiself-organising
maps to model each agent’s meaning space individually. &keltris a closer
analogy to real cognitive spaces. Specifically, the measpares are limited
in the amount of memory resource they have available, and@remniscient.
Rather they are private and unique to each agent. The SOMmbésve a high
enough capacity to completely define the agents’ envirotwéarming a further
motivation to generalise. We have made explicit the gersatadn parameter that
was previously implicit to earlier ILM’s and demonstratesl iole in promoting
emergence of compositionality. As well as being unique thdadividual, the
learning displayed by the SOM demonstrates another prppémeal language
learners: namely, change over time with each new encouhtdiject.

These enhancements, or improvements, to the classicatetedearning
framework are gained without compromising the essentiatteof the paradigm.
As with the classical framework, stable, compositionaglaages emerge through
use (i.e., inter-agent communication related to structuwbject spaces) over



cultural time. Further, the poverty of stimulus encounddseth in reality and in
our simulations remains essential in the evolution of acstmed language, rather
than a ‘problem’ as in the Chomskyian tradition.

Although in this work, we have relaxed or removed some of tleakening
assumptions in the classical ILM, much remains to be donerd are still many
strong simplifications and abstractions concerning theireadbf language and
communication utilised in our computer simulations. Onganiant direction
for future work is to move towards acoustic (‘speech’) commation—having
agents produce and perceive sounds coupled to meaningygassed by Worgan
and Damper (2007).
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