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Abstract

1 Introduction

Standard linguistic theories in the tradition of formal semantics predicts
that (for a simple fragment) any function from individuals to truth val-
ues is a property that can be denoted by a property denoting expression.
It is obvious, however, that in any language only a tiny fragment of all
these functions are, in fact, denoted by simple words or constructions.
This gives rise to the following questions: (i) can we characterize the
properties that are denoted by simple expressions in natural language(s),
and, if so, (ii) can we give a pragmatic and/or evolutionary explanation
of this characterization?

To answer question (i), Bickerton (1981) hypothesizes that ‘simple’
expressions can only denote connected, or convex, regions of cognitive
space, and hypothesizes that the preference for convex properties is an
innate property of our brains. Unfortunately, when we think of proper-
ties as in standard denotational semantics, it is impossible to distinguish
properties that have, from properties that don’t have such ‘structural
features’. Partly for reasons like this Gärdenfors (2000) proposed an al-
ternative, and richer, framework to represent meanings: meaning spaces
should have some additional structure, i.e., an a priori given coordinate
structure. ‘Natural’ properties can now be characterized as those sub-
sets of the meaning space which form convex regions of this meaning
space. A partition of the meaning space into convex regions with cen-
tre points for each of the regions is known as a Voronoi Tesselation.
Gärdenfors thinks of the region itself as the descriptive meaning of the
property denoting expression, while the centre point is thought of as its
prototype.

As for the second question, it is shown in Jäger & van Rooij (2005)
that Voronoi Tesselations can be derived as equilibria of signaling games
using an Eucledian meaning space with a utility function based on a
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notion of similarity. On flat distributions of the points in the meaning
spaces, these prototopes will always be in the center of their descriptive
meanings. Although this captures an important intuition, it also misses
something, and it might even be wrong for simple predicates like color
and polar adjectives: intuitively, the prototype (or stereotype, if you
want) of being white is being very white, but that is not what is coming
out. It is also predicted that adjectives like “tall” and prepositional
phrases like “above the table” give rise not only to convex meanings,
but also to prototypes. Although the former result is appropriate (cf.
Zwarts, 1997), the latter result is in conflict with what is standardly
assumed in linguistics (e.g. Kamp & Partee, 1995).

In this paper we give an alternative evolutionary game theoretical
motivation for the prominence of convex meanings, but one that (i)
doesn’t make use of utility functions based on a notion of similarity,
and (ii) gives rise to prototypes (or stereotypes) that are extreme rather
than central points in the descriptive meaning of the property denoting
expression (adjective).1

2 Signaling games with comparison classes

Consider the following signaling game between a sender S and a receiver
R. It is known between S and R that there are n + 1 individuals at the
central station. These individuals all have different heights, and there
are λ different heights. S wants R to pick out a certain individual, X,
but only the former knows the height of this individual, R does not.
Receiver R, however, can see the relative heights of all n+1 individuals
at the central station, and we assume that all λ individuals have a
different height. S can influence the choice of R’s action by sending
her a message in M = {m1,m2}. Although we might think of m1 as
being ‘Small’, while m2 as being the message ‘Large’, these messages
don’t have any a priori meaning. The utility functions of S and R are
identical and give value 1 in case R picks the person S had in mind, and
0 otherwise. What are the equilibria of this type of game?

To get some intuitions, let us fix the numbers n and λ. Let us assume
that λ = 4 and n = 1, meaning that individuals can have 4 (relevantly)
different heights and that there are 2 persons at the place between which
R has to choose. But this means that there are 6 possible situations:
S = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉, 〈3, 4〉}, where 〈i, j〉 denotes the sit-

1The result is somewhat similar to the outcome of the game set up by Nowak & Krakauer
(1999) to provide a game theoretical motivation for the fact that the vowels of languages
are perceptually maximally distinct. The method of deriving this ‘maximal distinctiveness’
result, however, is very different, and it also doesn’t require the (extremely) strong stochastic
evolutionary stability concept implicitly used by the above authors.
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uation where the two individuals at the central station are the ones
with height i and with height j (with j > i). The sender S knows the
height of the person he has in mind, and we can associate with each
height the set of situations in which the person with this height occurs:
H = {h1, h2, h3, h4}, where:

h1 = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉}, h2 = {〈1, 2〉, 〈2, 3〉, 〈2, 4〉}, and
h3 = {〈1.3〉, 〈2, 3〉, 〈3, 4〉}, and h4 = {〈1, 4〉, 〈2, 4〉, 〈3, 4〉}.

His strategy is to send in each of those situations a particular mes-
sage, thus a function in H = {h1, h2, h3, h4} → M = {m1,m2}. The
receiver strategy is a function from H to pick either the smallest individ-
ual in a situation, or the tallest one, thus a function in [M → {sm, t}].
We say that 〈σ, ρ〉 is a solution (a perfect Bayesian equilibrium)2 of this
game iff

(i) ∀h ∈ H : σ(t) ∈ argmaxm∈MU∗
S(h, ρ(m)), and

(ii) ∀m ∈ M : ρ(m) ∈ argmaxa∈{sm,t}
∑

h∈H P (h|σ−1(m))× U∗
S(h, a).

The only thing we have to determine now is the values of U∗(hi, sm)
and U∗(hi, t). We calculate the value of U∗(hi, sm) as the expected
utility that i is the individual with the smallest height in the situations
in hi. Because each hi contains three situations, we assume that for
each hi ∈ H and s ∈ hi: P (s|hi) = 1

3 . Thus (where sm(〈i, j〉) = i):

U∗(hi, sm) =
∑

s∈S

P (s|hi)× [1, if i = sm(s), 0 otherwise].

Similarly, we define U∗(hi, t) as follows:

U∗(hi, t) =
∑

s∈S

P (s|hi)× [1, if i = t(s), 0 otherwise].

Now we can easily see that 〈σ, ρ〉 is a perfect Bayesian equilibrium
of this game where S sends m1 in h1 and h2, and m2 in h3 and h4 —
σ = {〈h1,m1〉, 〈h2,m1〉, 〈h3,m2〉, 〈h4,m2〉} —, and R responds with sm
when he receives m1, and with t when he receives m2. To see this, notice
that if we fix ρ as above,

U∗(h1, ρ(m1)) = U∗(h1, sm) = 1 > 0 = U∗(h1, t) = U∗(h1, ρ(m2)), and
U∗(h2, ρ(m1)) = U∗(h2, sm) = 2

3 > 1
3 = U∗(h2, t) = U∗(h2, ρ(m2)), and

U∗(h3, ρ(m1)) = U∗(h3, sm) = 1
3 < 2

3 = U∗(h3, t) = U∗(h3, ρ(m2)), and

2This is the standard solution concept for signaling games.

3



U∗(h4, ρ(m1)) = U∗(h4, sm) = 0 < 1 = U∗(h4, t) = U∗(h4, ρ(m2)).

Thus, σ is indeed a best, and indeed the best, reply to ρ. But ρ is also
the best reply to σ. To see this, we show that for each f ∈ {m1,m2},
ρ(m) ∈ argmaxa∈{sm,l}

∑
h∈H P (h|σ−1(m)) × U∗

S(h, a). Abbreviating∑
h∈H P (h|σ−1(m))×U∗

S(h, a) by EUR(a, σ,m), it suffices to show that
EUR(sm, σ,m1) > EUR(l, σ, m1) and EUR(l, σ, m2) > EUR(sm, σ,m2).
We do this by just calculating all these values:

EU(sm, σ,m1) = [P (h1|{h1, h2})×U∗(h1, sm)]+[P (h2|{h1, h2})×U∗(h2, sm)] =
[12 × 1] + [12 ×

2
3 ] = 5

6
EU(t, σ, m1) = [P (h1|{h1, h2})×U∗(h1, t)]+[P (h2|{h1, h2})×U∗(h2, t)] =

[12 × 0] + [12 ×
1
3 ] = 1

6
EU(sm, σ,m2) = [P (h3|{h3, h4})×U∗(h3, sm)]+[P (h4|{h3, h4})×U∗(h4, sm)] =

[12 ×
1
3 ] + [12 × 0] = 1

6
EU(t, σ, m2) = [P (h3|{h3, h4})×U∗(h3, t)]+[P (h4|{h3, h4})×U∗(h4, t)] =

[12 ×
2
3 ] + [12 × 1] = 5

6

Thus, the (unique) best response to σ is to pick the smallest individ-
ual at the central station if m1 is sent, and to pick the tallest individual
as a response to m2, which is exactly what ρ does.

Now we might think with Lewis (1969) of σ−1(m) as the descriptive
meaning of m, and of ρ(m) as the imperative meaning of m (given equi-
librium 〈σ, ρ〉). Notice that σ−1(m1) = {h1, h2} while ρ(m1) = sm, and
σ−1(m2) = {h3, h4} while ρ(m2) = t.

3 General results

Our example was extremely simple, with only 4 possible heights and 2
individuals at the central station. However, the result holds in general.
Also if there are, for instance, 100 possible heights and 40 individuals at
the central station, such that R’s actions consists of the functions ‘pick
the k + 1th tallest individual’ (0 ≤ k ≤ 39), there will be only one (rel-
evantly different) non-pooling equilibrium in pure strategies3 according
to which in all types in {h1, . . . , h50} sender S will send m1, and R will
pick the smallest individual at the central station if he receives m1, and
the same for {h51, . . . , h100}: S will send m2, while R will respond by
picking out the tallest individual he sees at the central station. Notice
that on a uniform probabability distribution, the imperative meanings
of m1 and m2 will be always as far apart as possible.

3And thus only one relevantly different evolutionary stable strategy.
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The above results were all based on the assumption that the proba-
bilities are flatly distributed over the meaning space. The results change
dramatically if the meaning space is still finite but the probabilities are
not flatly distributed. However, one can prove an important and very
surprising fact/theorem if one assumes that the meaning space is con-
tinuous, like [0, 1]: in that case, the descriptive meanings will be convex
and equally large, i.e., [0, 0.5] and (0, 5, 1], while the prototype meanings
are always as far away as possible. The surprising result (due to Bart
Lipman) is that this holds irrespective of the probability distribution.

Let there be n + 1 people at the central station, and let Rs strategy
be to choose the (k + 1)th tallest person in response to one word and
the (k + d + 1)th tallest in response to the other, where d > 0. It is
not difficult to show that given k and d, there is a unique c with the
property that S’s payoff to sending the first word exceeds his payoff to
sending the second iff h ∈ [0, c]. Hence given any pure strategy by R, S’s
best reply will always be partition [0, 1] into two intervals. Therefore,
we know that the language will have S send one message if h ∈ [0, c]
and the other if h ∈ (c, 1] for some c.

Consider R’s best reply if he receives the message corresponding to
(c, 1]. His payoff to choosing the (k + 1)th tallest person is proportional
to

Pr[h ∈ (c, 1] and k people taller] =
(

n
k

) ∫ 1

c
[1−F (h)]k[F (h)]n−kf(h)dh.

Let this expression be φ(k). For k ≥ 1, we can integrate by parts to
obtain

φ(k) =
(

n
k

)
1

n−k+1 [1− F (h)]k[F (h)n−k+1|1c +
(

n
k

) ∫ 1
c

k
n−k+1 [1−F (h)]k−1[F (h)]n−k+1f(h)dh.

But F (1) = 1 and
(

n
k

)
k

n−k+1 =
(

n
k − 1

)
, so

φ(k) = φ(k − 1)−
(

n
k

)
1

n− k + 1
[1− F (c)]k[F (c)]n−k+1

Because the term being subtracted on the right-hand side must be
positive, we see that φ(k) is decreasing in k. Hence the optimal choice
for R is k = 0 – that is, to choose the tallest person. An analogous
argument shows that when R conditions on [0, c], the optimal choice is
the shortest person.

Given these options, it is easy to see that S prefers R to pick the
tallest person iff [F (h)]n > [1−F (h)]n or F (h) > 1

2 . Thus we must have
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c equal to the median height. Because this is the only pure strategy
equilibrium, the optimal language is such that S says m1 when X’s
height is below the population median and m2 otherwise. R’s strategy
is to try the shortest person in the first case and the tallest in the second.

4 Use of the game

The above model can be applied immediately to polar adjectives, with
a one-dimentional meaning space. For other property denoting expres-
sions, the game has to be extended a bit. For color adjectives, for
instance, we are working with a 3-dimensional meaning space (the di-
mensions being hue, saturation, and intensity) and with more than two
messages. Such an extension is not a problem: we still get the result
that their prototype meanings will be as far away as possible. Combin-
ing this with contrast classes seems to give the right results:

[...] the same color term clearly has a different reference in
each domain [...] color terms aren’t used so much to refer to
particular colors as to maintain the color contrast between
different referents. Every ‘domain’ is thus a contrast class,
to which we apply color terms of maximal distinctiveness.
(Bromström, 1994).
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