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This paper presents a simulation model of self-organizing lexical networks. Its starting point is
the notion of an association game in which the impact of varying community models is studied
on the emergence of lexical networks. The paper reports on experiments whose results are in
accordance with findings in the framework of the naming game. This is done by means of a
multilevel network model in which the correlation of social and of linguistic networks is studied.

1. Introduction

There is an overwhelming evidence for the exceptionality of social and linguistic
networks which are known for their Small World (SW) property (Watts & Stro-
gatz, 1998; Blanchard & Kriiger, 2004): other than random graphs, SW-networks
do not only have short geodesic distances, but also a high degree of cluster forma-
tion. Steyvers and Tenenbaum (2005) relate this property with the time and space
complexity of linguistic networks where it is seen to guarantee efficient memory
storage and retrieval. On the other hand, Newman (2003) reports on assortativity
in social networks where agents with alike connectivity patterns tend to be linked.
So far, simulation models of language evolution make hardly use of these
findings. Rather, they rely on unrealistic community models in which for an in-
creasing number of iterations all agents tend to communicate with each other with
equal probability. That is, Fully Connected Graphs (FCG) are implicitly assumed
as community models where the smaller the number of agents, the less rounds
are needed to complete their connections. Conversely, if the number of rounds is
small but the population is large, agents communicate only with a small number
of other agents so that random graphs emerge. Anyhow, FCGs are unrealistic due
to their topology, while random graphs lack the clustering of social networks.
Recently, there had been efforts to utilize more realistic community models in
language simulation. This has been done in the framework of the naming game
(Steels, 1998; Baronchelli, Felici, Loreto, Caglioti, & Steels, 2006) in which
agents collectively learn a meaning function f : V' — M from a set of words
to a set of objects. As namings are seen to be independent, M is reduced to a



single object. In this scenario, Baronchelli et al. (2006) start with a community
model where sender and listener are always randomly chosen among all agents.
Baronchelli, Loreto, Dall’ Asta, and Barrat (2006) use instead the SW-model of
Barabasi and Albert (1999) (i.e. the BA-model) in which agent connectivity obeys
a power law. They show that under this regime, language convergence is slowed
compared to FCGs. See Dall’ Asta, Baronchelli, Barrat, and Loreto (2006b) for an
extensive discussion of the impact of the topology of agent networks on the nam-
ing game. This includes memory complexity which in the BA-community model
turns out to be less. Dall’ Asta, Baronchelli, Barrat, and Loreto (2006a) comple-
ment this picture by starting from an agent network based on Watts & Strogatz’s
SW-model and also report an acceleration of the convergence process in conjunc-
tion with a reduction of memory load. See also Lin, Ren, Yang, and Wang (2006)
who use SWs with homogeneous node degree distributions to separately study the
effect of agent clustering. Further, Barr (2004) considers a set of words and of ob-
jects whose mapping is learned in a FCG community in comparison to a geometric
community model which corresponds to a k-regular graph (Mehler, 2007a).

All these approaches combine a structured community model with an unstruc-
tured meaning space. That is, the set-theoretic naming game does not consider
meaning-based associations of lexical items which span lexical networks. Thus,
we lack a simulation model which studies the impact of social agent networks on
the emergence of linguistic lexeme networks. This paper presents such a model.
Our basic hypothesis is that the topology of the agent network does not only have
an impact on the process of language change (e.g. by reducing its time and space
complexity), but also on the topology of the lexical network being learned. In
other words: during language evolution, social network structure imprints on lin-
guistic network structure — at least on the level of topological characteristics. The
paper presents a simulation model in support of this hypothesis. In order to do
this we invent the notion of an association game which complements the notion
of a naming game from the point of view of lexical networks. The paper is orga-
nized as follows: Section 2 presents the simulation model and defines association
games. Section 3 shows the impact of the community structure on self-organizing
lexical networks. Finally, Section 4 concludes and prospects future work.

2. A Three-Level Simulation Model of Self-organizing lexical networks

The basic idea of our approach is to start form a three-level simulation model
of lexical networks. In this so called N® model, a lexical network is learned by
interacting agents subject to their neighborhood relations. More specifically, we
distinguish the level of text aggregates (generated by the agents) from the under-
lying community network and the lexical network as output by the multiagent
learning. That is, agent, text and lexeme network are the 3 levels of the N3 model:

1. The agent network is the independent variable. By analogy with the naming
game we start from a model of intra-generational language change (Niyogi,



2006). Thus, we suppose that during the run of a game agents have stable
neighborhoods — solely affected by the random choice of interactants.

2. The lexical network is the dependent variable. Its evolvement is observed in
terms of small world characteristics where the size of the underlying lexicon
is seen to be fixed during the same run.

3. Finally, the intermediary text level bridges the gap between the social and
the language network and, thus, conveys information from the social topol-
ogy to its linguistic counterpart.

A three-level network is exemplified by scientific communication where net-
working occurs on the level of the scientists involved (i.e. a collaboration net-
work), on the level of the documents being generated (spanning a citation net-
work) and on the level of the shared ontology manifested by these documents.
Evidently, networking on any of these levels correlates with structure formation
within the other two. In this paper we look on linguistic networking from the point
of view of social networking thereby studying ontology formation subject to con-
straints of the underlying language community (as, e.g., in wiki-based systems).

In order to simulate this dynamics we now present a model of social network-
ing, of lexical networking and of text generation & processing.

2.1. Agent Networking

Agent communities P are represented as undirected graphs G(P) = (P, E). In
order to vary G(P) as an independent variable we implement three graph classes:

e Random graphs G,.nq(P) are based on power law-like degree distributions
of agent connectivity.

o k-regular graphs G,eq(P) are graphs in which each vertex has exactly the
same number of neighbors, that is, the same degree k.

e Finally, small world graphs Gy, (P) combine a power law-like degree dis-
tribution with a high cluster value and short average geodesic distances.

The first two classes were used by Watts and Strogatz (1998) to introduce their
SW-model. Both are unrealistic in terms of social networking: random graphs
lack the clustering of social networks, while small average geodesic distances
are absent from regular graphs. Nevertheless, random graphs share the distance
property with SWs, while regular graphs have by definition high cluster values.
Random and regular graphs are referred to as baseline community models. That is,
we expect that communities of the sort of Gand(P) and Greg(P) lead to deficient
lexical networks when underlying a language game. We suppose that this is due
to their disputable status as models of social networks — in contrast to SWs. In this
paper, we generate SW-agent networks based on the approach of Mehler (2007a).
It outputs connected graphs with high cluster values, short geodesic distances,
power law-like node connectivities and assortative mixing of node degree — in
accordance with what is known about social networks (Newman, 2003).



2.2. Lexical Networking

The language learned by the community P is the dependent variable in our model.
As explained in Section 1, we focus on lexical networks as target languages which
are represented as undirected graphs. We utilize Latent Semantic Analysis (LSA)
(Landauer & Dumais, 1997) as a learning theory of lexical associations in order
to induce the edge set of these graphs. As LSA is a single agent model of usage-
based meaning, we reconstruct it in terms of multiagent learning (Mehler, 2007a).
This is done by means of an iteratively computable lexical association measure

which is updated per text unit: For a lexicon V" and a sequence S,, = (1, ...,Zy)
of n texts, the association of two lexical items v;, v; € V' is computed as
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where Fjj is the number of texts in Sy, in which v; occurs and f;, is the frequency
of v; in xy. In accordance with models of human text processing, a(v;, v, Sy,) is
sensitive to the order of texts in .S,,. Next, we endow each agent a € P with this
learning model so that he can learn lexical associations subject to the communi-
cation situations to which he participates. After ¢ iterations of the language game,
that is, after processing sequence S, this leads to a distributed semantic space

My(P) = {(V, EL,w!) |a € P} @)
in which each agent a € P has his own meaning space M, (a) = (V, E%,w!) with
edge set E! and weighing function w’, (v;, v;) = a(v;, v, S%). Note that lexicon
V' is common to all agents while the sequence S’ of the texts processed by agent
a at time t is specific to a. For a text x; processed at time ¢ by agent a we write

M;_1(a) iR Mi(a) or M(a) = zi(M;_1(a)) 3)

where ¢ indicates how often a processes x; at time t. Thus, at time ¢ the mem-
ories M;(a) of agents may differ dependent on the text sequences S’ they have
processed till £. This model resembles the one of Hashimoto (1997). The differ-
ence is that we concentrate on syntagmatic associations, optimize the model for
iterative computability and clarify the topological characteristics of M (P).

2.3. Association Games

Now we define Association Games (AG) which generate distributed semantic
spaces M (P) based on community models G(P). That is, AGs are mappings

G(P) — M(P) )

from social to linguistic networks. They define an association task in which the
sender produces a text  to mask the prime word he used to generate = and where



the listener has to identify the prime. A round of an AG looks as follows: starting
from a randomly chosen sender ag € P, all neighbors of ag in G(P) are picked
as listeners ay, each getting a separate text (Zollman, 2005). For such a listener
ar, the sender is masking the word v he used to prime the lexical constituents
of his output text x; so that the listener ay, has to find out which word the sender
had in mind when producing x;. The listener processes x; and tells the sender his
guess v_ so that ag can decide whether he was understood or not. A single round
of the AG is successful if both sender and listener associate the same or related
words with the same input text. This scenario resembles the children’s game “/
spy with my little eye, something beginning with ...”. The difference is that in
the association game not denotations, but lexical primes are guessed using texts as
underspecified descriptions thereof and where agents learn the underlying priming
relations (i.e. lexical connotations) by playing the game.

More formally: starting from a sender ag at round ¢ and a randomly chosen
prime v, a text of length [ is generated by collecting a subset of [ nearest neigh-
bors of v4 in M;_1(ag). Initially, lexical neighbors are picked at random. Note
that we suppose fixed text lengths for the whole run of a game. Note further that
texts are represented as multi-sets so that types v € V' may recur. Next, the lis-
tener uses x; to activate a subspace in his memory M;_1(ar,) and, based thereon,
to context-prime a guess v_. This is done by an inverse function of text genera-
tion which finds the “centroid” among the constituents of x; and their neighbors
in M;_1(ayr). After uttering v_, the sender evaluates this guess by the geodesic
distance L(v4,v_) in M;_1(ag). Here, we start from the hypothesis that any
text generation/processing reinforces the associations being manifested in the out-
put/input text so that the sender is “his first recipient”, while the listener always
tries to “understand” his input. Now, a successful round is rewarded by reinforcing
memory update, while otherwise this reinforcement is ommitted:
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r is a further parameter of the model where = 0 means that v Lo

So what does it mean now to speak about terminological alignment via asso-
ciation games? Under a local perspective this means that if sender and listener
align their lexical associations as they continually communicate they finally play
the game more and more successful. Under a global perspective it means that if
the AG is successfully played by the community P as a whole, this leads to a
lexical network which — as we hypothesize — has the SW-property subject to the
SW-property of the agent network G(P). This is evaluated in the next section.

3. Experimentation

We test our hypothesis about the imprint of social on linguistic structure by vary-
ing the community model with random, small world and 4-regular graphs using



100 agents. We consider a lexicon of 500 words and set the threshold of the sum-
mary language to 0.375. That is, an association between two words is seen to
belong to the target language if at least 37.5% of the agents share it. Further, we
set the size of texts to 5 tokens and r» = 2. Finally, we compute 500, 000 iterations
of the AG per community model and average over 50 runs. Figure 1 exemplifies
a run based on a SW-like agent network. For growing iteration we see gradu-
ally evolving a connected graph which (as explained below) results in a SW-like
lexical network — starting from a completely disconnected graph.

So what happens to the topology of lexical networks if the community model
is varied? This is answered in Figure 2. We start from the fraction of words in
the largest connected component (2.a) and observe that a connected graph of all
words evolves based on the SW- and on the random community. However, in
the former this happens faster whereas the regular graph-community lacks such
a component. Next, Figure 2.b shows the cluster coefficient (Watts & Strogatz,
1998). We observe that in the SW-community the lexical network has a much
larger degree of clustering — comparable to the values observed in wiki-based net-
works (Mehler, 2007b). In fact, in the random community-based lexical network
clustering is much lower — not to mention the regular graph-community. Figure
2.c completes this picture: the average geodesic distance is smaller and emerges
faster in the SW-community based lexical network compared to its random coun-
terpart. However, the regular community-based lexical network seems to have
the smallest distance value. Actually, this is due to the fact that in 2.c L is al-
ways computed for the largest connected component. Thus, in 2.d we normalize
L by assuming that unconnected agents are separated by |V | — 1 edges. Now, the
random and regular graph-based agent networks are both outperformed by their
SW-counterpart.

In summary, we observe an imprint of social on linguistic topology, though
not an isomorphic one: the SW-community model results in a SW-lexical net-
work; random and a regular graph-based community models do not. Moreover, in
the latter case the lexical networks do not share properties with their social coun-
terparts: the regular agent network has, per definitionem, a high cluster value, but
not the linguistic network based on it. These observations confirm a strong impact
of social on linguistic networking as motivated by complex network theory. To
the best of our knowledge this has not been evaluated by a multiagent simulation
model of lexical networks so far.

4. Conclusions

We have introduced association games as a framework to study the self-
organization of lexical networks. We have shown that the topology of the un-
derlying agent community has a strong impact on these networks. This has been
done in terms of intra-generational language change. The co-evolvement of social
and linguistic networks in inter-generational language evolution is object of future
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Figure 1. Having a look at the dynamics of gradually evolving lexical networks: snapshots after
1,000, 25,000, 50,000 and 300,000 rounds of an association game.

work. This also includes an integration of the naming and the association game.
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