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We combine information theory and cross-situational learning to develop a novel metric for
quantifying the degree of regularity in the mappings between signals and meanings that can
be inferred from exposure to language in context. We illustrate this metric using the results of
two artificial language learning experiments, which show that learners are sensitive, with a high
level of individual variation, to systematic regularities in the input. Analysing language using
this measure of regularity allows us to explore in detail how language learning and language use
can both generate linguistic variation, leading to language change, and potentially complexify
language structure, leading to qualitative language evolution.

1. Introduction

Croft (2000)’s evolutionary model of language change proposes that language is
made up of multiple linguistic patterns, which can be differentially replicated
across communities and over time, and thereby adapt to their environment. We
investigate one potential functional source of such adaptation, namely the ease
with which patterns of mapping between signals and meanings can be learnt.

Recent research focuses on the inherent stochasticity of language learning
(Bod, Hay, & Jannedy, 2003); children make use of statistical regularities in their
linguistic input to learn phonemic contrasts (Maye, Werker, & Gerken, 2002),
word boundaries (Jusczyk, Goodman, & Baumann, 1999; Saffran, Newport, &
Aslin, 1996) and basic syntactic dependencies (Gómez, 2002). Regularity helps
us to learn the specific mappings between meanings and signals: sharing a linguis-
tic label increases the degree to which meanings are perceived to be more similar
(Sloutsky, Lo, & Fisher, 2001), and reliable co-occurrence with labels enhances
the perceptual salience of features of referent meanings (Schyns & Murphy, 1994).
Patterns of frequency of use also play a crucial role in the entrenchment of linguis-
tic constructions and in the persistence of linguistic irregularity (Bybee & Hopper,
2001).

Few efforts, however, have been made to quantify the systematicity or regu-
larity in linguistic knowledge. Our main aim in this paper is to propose such a
measure, which can be used to examine how this regularity impacts on the learn-
ability of languages and on their use. In Section 2, we present a novel measure



of quantifying linguistic regularity, based on the confidence in the signal-meaning
mappings that learners can derive from their experience over multiple episodes of
language use. In Section 3, we use the measure in two artificial language learning
experiments, and examine how learning is affected by regularities in the input.
Finally, we briefly discuss the ramifications for language change and evolution.

2. Quantifying Linguistic Regularity

Researchers in evolutionary linguistics often make a distinction between compo-
sitional and holistic languages (Kirby, 2002; Brighton, 2002). In a compositional
language, the meaning of a signal is a function of the meanings of elements of
the signal and of the way those elements are arranged together. Symmetrically,
the signal encoding a meaning is a function of the signals that encode elements of
the meaning. In a holistic language, by contrast, there is no such relationship: the
whole signal stands for the whole meaning. Human languages, however, are nei-
ther wholly compositional nor wholly holistic, but contain constructions of both
types, and many with intermediate behaviour. Recent formulations of grammar
(Langacker, 1987; Croft, 2001), indeed, use this insight to represent all linguis-
tic knowledge in a large lexicon of constructions, or form-meaning pairings of
varying levels of generality, ranging from very general compositional rules to id-
iosyncratic holistic idioms.

From an evolutionary point of view, it would be beneficial to compare lan-
guages in terms of their level of compositionality, to explore the conditions under
which they become more systematic and can sustain complexity. Despite this,
useful measures of systematicity are not available; among the very few attempts
to measure language compositionality was K. Smith (2003), who used the corre-
lation of similarity between signals with similarity between meanings, but only
by considering signals and meanings holistically, and thus failing to isolate the ef-
fects of meaningful elements of signals and irreducible aspects of meanings. We
aim here to fill this gap, by describing a gradient measure to quantify the regular-
ity of mapping (RegMap) between signals and meanings. This measure is based
on the cross-situational co-occurrence (Siskind, 1996; Smith, Smith, Blythe, &
Vogt, 2006) of signal and meaning components in the language; it is bidirectional,
and can thus be used to quantify both the regularity of the mapping from signals
to meanings and vice versa; it can also be applied at many different levels of lin-
guistic analysis, from measuring the regularity with which a particular morpheme
encodes a component of meaning, to the overall regularity of the entire system.

We illustrate the method by exploring the regularities in the miniature artifi-
cial language shown in Table 1. In this language, meanings are represented in a
three-dimensional meaning space {COLOUR, SHAPE, INSET}, with three differ-
ent values on each dimension, giving the language 27 possible meanings in total.
Each meaning is paired with a signal (shown in the cells of the table), which is also
made up of three dimensions, or syllables {σ1, σ2, σ3}. We can see that the signal



Table 1. A language with near-perfect compositionality. Values in syllables 1, 2
and 3 encode values on the meaning dimensions colour, shape and inset respec-
tively, with the exception of the highlighted elements.

COLOUR
blue red yellow

tuloga kilodi pelodi cross
square tuloga kiloga peloga dot

tulobe kilobe pelobe star
tumudi kimudi tumudi cross

SHAPE hexagon tumuga kimuga pemuga dot INSET
tumube kimube pemube star
tunadi kinadi penadi cross

oval kinaga penaga tunaga dot
tunabe kinabe penabe star

and meaning dimensions map onto each other almost perfectly; the first syllable
encodes colour, the second, shape and the third, inset. Only a few elements (high-
lighted in the table), do not conform to this encoding, so these break the perfect
compositionality of the language. On the other hand, the language is clearly far
from holistic, as there remains a large degree of regularity in the signal-meaning
mappings. How can we quantify this systematicity? We start by calculating how
regularly a single signal dimension encodes a given meaning dimension, and then
scale this up to measure RegMap for the entire language.

2.1. RegMap from a signal dimension to a meaning dimension

In developing RegMap, we make use of humans’ “cognitive preference for cer-
tainty and for robust, redundant descriptions” (Pierrehumbert, 2006, p.81), basing
our metric on redundancy, namely the degree of predictability, order or certainty
in a system. Redundancy is defined mathematically as the converse of entropy, as
measured over a finite set of mutually independent variants (Shannon, 1948).

Consider, then, the different variants in the first syllable in the language shown
in Table 1, namely {ki, pe, tu}, and how they co-occur with the variants
{red, blue, yellow} of the meaning dimension COLOUR depicted in the columns
of the table. For each signal variant s in dimension σ1, we can calculate the
relative entropy and thence its redundancy Rs across meaning variants:

Rs = 1− −
∑
ps,m × log(ps,m)
log(Nm)

, (1)

where Nm is the number of different values on the meaning dimension (here
COLOUR), and ps,m is the probability that signal variant s and meaning value m
co-occur. Rs effectively reflects how certain we are that a signal variant in σ1

unambiguously encodes one COLOUR variant (Table 2).
In calculating the regularity of mapping for the whole signal dimension σ1, we



Table 2. Co-occurrences of the signal variants of σ1 and the
meaning values of COLOUR in the language shown in Table 1.

COLOUR
blue red yellow Rs Fs RFs

ki 1 8 0 0.682 9 6.142
σ1 pe 0 1 7 0.657 8 5.256

tu 8 0 2 0.545 10 5.445

need to consider the R values for every variant. Following usage-based models
(Barlow & Kemmer, 2000), we also assume that frequency plays a crucial role in
linguistic entrenchment, and hence the level of regularity which can be attributed
to a construction. We therefore multiply the redundancy of each signal variant by
its frequency in the language (F ), obtaining a weighted redundancy value (RF ).
We now define RegMap for a signal dimension S with respect to a meaning
dimension M as the sum of RF for each signal variant s, divided by the sum
of frequencies for each varianta. This is further adjusted to take account of any
discrepancy d between the number of variants in S and the number of variants in
M , where d is the greater of these divided by the lesser:

RegMap(S→M) =
∑

(RFs)∑
(Fs)

× 1
d

(2)

Substituting the data from Table 2 into Eq. 2, therefore, yields a value for
RegMap(σ1→COLOUR) of 16.843/27× 1/(3/3) = 0.623.

2.2. RegMap for the entire language

Table 3. RegMap(S→M ) for all dimension pairs in the language.

M
COLOUR SHAPE INSET RS FS RFS

σ1 0.623 0.008 0.008 0.881 0.639 0.563
S σ2 0.000 1.000 0.000 1.000 1.000 1.000

σ3 0.008 0.007 0.890 0.910 0.905 0.825

Table 3 shows RegMap values for all combinations of signal and meaning
dimensions, calculated using Eq. 2. Note that when RegMap = 1, there is an un-
ambiguous representation of the meaning dimension by the signal dimension (e.g.
RegMap(σ2→ SHAPE)); whenRegMap = 0, there is no information at all about
the meaning dimension in the signal dimension (e.g. RegMap(σ2→ COLOUR)).
The values in Table 3 can be used to estimate the regularity of the whole lan-
guage. First, we use Eq. 1 again, substituting signal and meaning dimensions for

aEach word occurs once here, so the sum of frequencies is the number of words in the language.



signal and meaning variants, to calculate the redundancy for a signal dimension
RS across all meaning dimensions. This value is again weighted by the sum of
all the RegMap values for the signal dimension, yielding a modified redundancy
value RFS ; this is averaged across all signal dimensions and again adjusted for
any discrepancy D between the number of signal dimensions NS and the number
of meaning dimensions NM to produce a RegMap value for the whole language:

RegMap(LS→M ) =
∑

(RFS)
NS

× 1
D

(3)

It is important to re-emphasise that directionality in the mappings be-
tween signals and meanings is assumed in these calculations, and therefore that
RegMap(LS→M ), as illustrated in the exposition above, will not necessarily
yield the same value as RegMap(LM→S) for the same language L. The latter
measure can be calculated exactly as described above, with the co-ocurrence ma-
trices in Tables 2 and 3 transposed before application of the equations.

3. Miniature artificial language learning experiments

We hypothesise that signal and meaning components which map each other sys-
tematically are more likely to be learnt and replicated than those with higher levels
of ambiguity or uncertainty. To investigate this, we conducted two experiments
using an artificial language learning task (Gómez & Gerken, 2000) with artificial
languages structured like the one in Table 1, but with different RegMap levels,
as detailed in Table 4. 40 participants (14 males, 26 females; all students in their
20s) were randomly assigned to the four conditions; they were recruited through
the Edinburgh University Careers website, and each paid £5 for participation.

Table 4. RegMap values for the four conditions in Experiments 1 and 2.

Language 1 Language 2 Language 3 Language 4
RegMap(LS→M ) 0.143 0.455 0.754 1.00
RegMap(LM→S) 0.154 0.468 0.754 1.00

Experiment 1. RegMap from Signals to Meanings Participants were asked
to learn the meanings of words in an artificial language as best they could. During
training, object-label pairs were presented on a computer monitor one at a time,
and participants proceeded to the next pair by clicking the mouse in their own
time (training duration: mean 10.2 mins, range 6.8-14.5). The whole language
was shown three times, with breaks between each. Participants were then tested
on the same objects they had seen in the training phase, and asked to type in the
corresponding words for each object in the language they had learnt. We measured
how well the structure of the signals produced by the participants mapped to the
structure of the meanings provided (i.e. RegMap(S→M)).



Experiment 2. RegMap from Meanings to Signals The experimental setup
was identical to Experiment 1, except that in the testing phase participants saw
screens showing one of the labels and all the objects; they were asked to click on
the object that they thought corresponded to the label. In this experiment, we mea-
sured RegMap(M→ S), or how well the meanings participants chose reflected
the structure of the signals provided. Since the results of both experiments are
comparable, they are presented and discussed together in the following sections.

Results We examine RegMap for individual signal dimensions (syllables) with
respect to the different meaning dimensions. For each signal and meaning dimen-
sion, Figure 1 shows the change in RegMap between the input and output lan-
guages, for both signal and meaning dimensions. Signal and meaning dimensions
show similar, but not identical, distributions. The three signal distributions are
significantly different (one-factor ANOVA: F = 19.554, d.f. = 2; p < 0.001),
as are the three meaning distributions (one-factor ANOVA: F = 21.742, d.f. =
2; p < 0.001).
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Figure 1. Change in RegMap between input and output languages, by signal dimension (left) and
meaning dimension (right). Plot shows inter-quartile range and median change.

Figure 2 shows RegMap for the output languages plotted against RegMap
for the input languages provide to participants. Visual inspection of the plots
in Figure 2 reveals a very high degree of individual variation, as all participants
in each vertical row of data were exposed to exactly the same input language.
Nevertheless, there is a significant effect of RegMap for the input language on
the resultantRegMap in the output language, both for signals to meanings (single
factor ANOVA: F = 21.581; d.f. = 3; p < 0.001) and for meanings to signals
(single factor ANOVA: F = 36.848; d.f. = 3; p < 0.001).
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Figure 2. RegMap(M→S) (left) andRegMap(S→M) (right) showing the languages produced
by participants as a function of the RegMap of their input language. Vertically arranged datapoints
(left to right) are from participants trained on languages 1-4; each point corresponds to one individual.

Discussion We note that in all these languages, COLOUR, SHAPE, INSET are
mainly encoded in σ1, σ2, σ3 respectively, which confounds the cause of the sig-
nificant differences between signal and meaning dimensions in Figure 1; we plan
to adapt the paradigm to explore these effects separately in future studies. Nev-
ertheless, the results provide support to the well-established finding that word be-
ginnings and endings are particularly salient (Jusczyk et al., 1999; Saffran et al.,
1996) and that structure in the middle of signals is more susceptible to being lost.
Our preliminary results suggest also that participants are sensitive to, and can re-
produce, regularities in the mappings between signals and meanings at different
levels, without explicit instruction; that there are great individual differences in
these abilities and that, in some cases, RegMap is greatly increased.

4. Conclusion

We have defined a novel metric to quantify the systematicity of languages, and
measured how the metric is affected by individual learning. Learning generates
new linguistic variants and thus provides an impetus for language change, yet also,
since languages with higher levels of RegMap are learnt with greater fidelity,
the kind of learning quantified here offers a potential cultural mechanism for the
accumulation of structure in language during cycles of learning from experience
and transmission.
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