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The iterated learning model (ILM), in which a language comesabout via communication
pressures exerted over successive generations of agents, has attracted much attention in recent
years. Its importance lies in the focus on cultural emergence as opposed to biological
evolution. The ILM simplifies a compositional language as the compression of an object
space, motivated by a poverty of stimulus—as not all objectsin the space will be encountered
by an individual in its lifetime. However, in the original ILM, every agent ‘magically’ has
a complete understanding of the surrounding object space, which weakens the relevance to
natural language evolution. In this paper, we define each agent’s meaning space as an internal
self-organising map, allowing it to remain personal and potentially unique. This strengthens the
parallels to real language as the agent’s omniscience and ‘mind-reading’ abilities that feature
in the original ILM are removed. Additionally, this improvement motivates the compression of
the language through a poverty of memory as well as a poverty of stimulus. Analysis of our
new implementation shows maintenance of a compositional (structured) language. The effect
of a (previously-implicit) generalisation parameter is also analysed; when each agent is able to
generalise over a larger number of objects, a more stable compositional language emerges.

1. Introduction

Hypothesising that language is a system of compression driven to adjust itself so
that it can be learned by the next generation is a relatively new approach in the
field of linguistics. Several important simulations (Kirby& Hurford, 1997; Kirby,
2001, 2002; Brighton, 2002; Smith, Kirby, & Brighton, 2003)have illustrated
its potential and provide an alternative to established innate accounts of language
(Chomsky, 1975; Bever & Montalbetti, 2002; Hauser, Chomsky, & Fitch, 2002).
Currently, existing versions of this iterated learning model (ILM) suffer from a
number of shortcomings. This paper will address some of these while maintaining
the positive features of the model.

In the classical ILM, an agent selects an object from its environment and
produces a meaning-signal pair that is then directly perceived by a listener. The
pairing is formed through a weighted connection between a meaning node and



a signal node, and is then used to adjust the weighted connections between
the meaning space and the signal space of the listening agent. In this way,
a language evolves across a number of generations. If each agent is only
given the associated signal for a small subset of possible objects, it is forced to
generalise across the remaining object space, so promotingthe formation of a
stable compositional language.

2. Shortcomings of the Iterated Learning Approach

In the ILM, the agents’ meaning space loosely represents the‘mind’ of a language
user. In many respects, however, this analogy breaks down, as each agent is
created with a perfect knowledge of the surrounding object space, which is never
found in reality. Rather, we need to consider the nature of the object space and
the agents’ ability to generalise across it. Also, a learning agent directly observes
each meaning-signal pair, and this introduces an element of‘mind-reading’, as the
learner now knows exactly what the adult teacher was thinking when it produced
a signal. Obviously, this weakens the ILM’s credentials as asimulation of cultural
language evolution. Kirby (2002, p. 197) himself acknowledges this criticism,
writing “the ready availability of signals with meanings neatly attached to them
reduces the credibility of any results derived from these models”, whereas Smith
et al. (2003, p. 374) write: “This is obviously an oversimplification of the task
facing language learners.”

In this paper, we aim to develop a new ILM to address these criticisms. Let
the iterated learning approach yield a language, able to describe every object
found in the object space,N , through a process of compression, governed by a
form of generalisation. This compression is possible by forming a compositional
language, which describes common features of objects in thespace. Figure 1(a)
illustrates how a compositional meaning node is able partially to define a number
of objects. In the original ILM, this is automatically determined by the number of
values,V , in the object space, e.g., in Fig. 1(a) each compositional meaning node
is able partially to defineV = 4 objects. An implicit generalisation parameterγ

then determines the proportion of theseV values that each meaning node can
generalise over: in Fig. 1(a),γ = 1. This parameter, ignored in previous work,
impacts significantly on the structure of the final compositional language. To
understand the role of the environment in the emergence of language, we need
to consider what happens when the generalisation parameterγ is not equal to 1.
Figure 1(b) shows the compression which results from halving the generalisation
parameter, which is now made explicit. Here, we see that 4 meaning nodes—
rather than 2 as previously—are now required to specify the same number of
object nodes (i.e., poorer generalisation). In this example, γ = 0.25 would
correspond to a holistic, non-compositional language (i.e., no generalisation).

Having acknowledged the role of this (previously-implicit) generalisation
parameter, we are now able to remove the ‘mind-reading’ abstraction from our



(a) γ = 1 (b) γ = 0.5

Figure 1. In an ILM, the object space is defined by the number ofobject valuesV in each of
F dimensions. In this example,F = 2 andV = 4. In the original ILM in (a), the generalisation
parameterγ is implicitly set to 1. By varyingγ as in (b), whereγ = 0.5, we can vary the level of
compression that each compositional meaning node can achieve.

simulations. To do this, we will define the agent’s meaning space as a self-
organising map (SOM) andγ as a radius around a selected object, removing
the two criticisms of the ILM stated above. That is, an agent no longer has
complete and perfect knowledge of the object space, and thisknowledge remains
private so that each agent develops a different, individual‘understanding’ of its
linguistic environment.

3. Self-organising maps and iterated learning

Self-organising maps (Kohonen, 1982) have previously beenused to good effect
to model emergent phonology (e.g., Guenter & Gjaja, 1996; Oudeyer, 2005;
Worgan & Damper, 2007). In the present work, SOMs offer a way to model
each agent’s unique and private understanding of its environment. Our model
is based on the neural network model of Smith et al. (2003, Sect. 4.2.1), but
with important differences motivated by the discussion of Section 2 above and
described explicitly in this section.

In this environment, an object can be defined as, e.g.,xk = {1, 2}, and in the
meaning space asm j = {1, 2}. Equivalently, it can be defined as the pair:

m′ j = {1, ∗}

m′ j +1 = {∗, 2}

where∗ represents a wildcard. In this example,m j forms a holistic signal, as
this individual meaning node is only capable of defining one object, whereasm′ j

and m′ j +1 together form a compositional signal, as features from the object
space are defined by the two meaning nodes and can be combined to define an
individual object. These feature definitions can then be used in other combinations
to describe other objects. We will maintain this aspect of the traditional ILM by
redefining generalisation as a variable radius around a perceived object.



The weightings on the connections between nodes of the meaning and
signal spaces determine the mapping from meaning-to-signal and from signal-
to-meaning. The object space,N , that each agent talks about is represented by
a simple coordinate system and a subset of these coordinatesis drawn from the
object space according to a uniform probability distribution. Each object in turn
is mapped directly to the appropriate meaning node in the agent’s meaning space.
The signals,l i , are generated by mapping from this meaning space to the signal
space, and are represented as characters from an alphabet,6 as:

l i = {(s1, s2, . . . , si , . . . , sl ) si ∈ 6 , 1 ≤ l ≤ lmax} (1)

from which it is clear that we need a sufficient number of signal nodes in the signal
layer to express any of the nodes in the meaning space.

Formally, the object space is:

N = {x1, x2, . . . , xk, . . . , xN}

with xk = {( f1, f2, . . . , fi , . . . , fF ) 1 ≤ fi ≤ V}

When required to produce an utterance, an agent will select an objectxk, and each
node in the meaning spacem j competes to have the shortest Euclidean distance
from this point. Formally, if we define the closest node asm(xk) then:

m(xk) = arg min
j

‖x − m j ‖ , j = 1, 2, · · · , l (2)

The winning node is then moved closer to the selected point, better defining the
object space as a whole. In addition, neighbouring nodes aremoved somewhat
closer to the object, allowing the network as a whole to represent the experienced
object space. The extent to which these nodes move is determined by a Gaussian
function,h j ,k, centred around the selected object (Haykin, 1999, p. 449):

h j ,k = exp

(

−
d2

j ,k

2σ 2

)

with σ ≡ γ (3)

whered j ,k is the distance between the winning neuronj and the excited neuronk.
To form a compositional signal, we build valid decomposition sets from the

meaning space, governed by the generalisation parameter,γ . We can then define
a set,Kk, containing all of those meaning nodes which fall inside theradius
aroundxk. Formally:

Kk = {m j ‖xk − m j ‖ ≤ γ } (4)

Considering all possible decompositions in turn, the agentwill pick the signal,
with the highest combination of corresponding weight values according to:



g(〈l i 〉) =

|S|
∑

i=1

|Kk|
∑

j =1

ω(K (x) j ) · WK (x) j NSi (5)

which is similar to Smith et al.’s equation on p. 380, in thatω(K (x) j ) “. . . is a
weighting function which gives the non-wildcard proportion of . . . ” K (x) j , so
favouring compositional meaning nodes.

All meaning and signal nodes that correspond to a possible decomposition of
the object are activated, with activationsasi andam j , respectively. If two active
nodes are connected, the weight on that connection is increased. If there is a
connection between an active node and an inactive node the weight is decreased.
Weights between two inactive nodes remain unchanged. The learning displayed
by this Hebbian network can be formalised as follows:

△wi j =







+1 iff asi = am j = 1
−1 iff asi 6= am j

0 otherwise
(6)

where △wi j is the weight change at the intersection betweensi and m j ,
si ∈ NS andm j ∈ NM . As shown by Oliphant (1999), this kind of learning is
required for agents to acquire a language system in the ILM framework.

While listening to each utterance, the weight values of the agent are adjusted—
extending its knowledge of the current language. This hypothesis allows it to
generalise to objects it has not encountered before, resulting in a meaningful
expression. Therefore, a poverty of stimulus causes the language to generalise
across an object space. Additionally, by having a limited number of nodes form
the meaning space, the agent does not have an infinite memory resource to draw
upon, forcing compression through limited memory as well aslimited stimuli.

Using this model, we will varyγ in order to assess how this affects the
stability, S, of the final compositional language:

S =
Sc

Sc + Sh
(7)

whereSc represents the proportion of compositional languages andSh defines the
proportion of holistic languages, which emerge over cultural time. The higher
the value ofS, the more likely is a compositional language to emerge—see Smith
et al. (2003, p. 377).

In the new model, each agent’s meaning space is undefined at birth (randomly
initialised) and will need to learn the structure of the object space as each object is
encountered. Consequently, the meaning space gradually comprehends the object
space but also remains potentially unique to each agent, as adifferent subset of
objects is encountered.



4. Results

We first ran the new SOM iterated learning model under the sameconditions
as the previous implementation, see Figure 2. As we can see from the results,
compositional languages emerge (S> 0.5) under a similar set of circumstances
to Smith et al.’s (2003) previous implementation. Therefore, the requirements for
a tight bottleneck and a structured meaning space remain in this implementation.

(a) 10% (b) 20%

(c) 50% (d) 90%

Figure 2. Stability of the resulting languages when each agent is exposed to some percentage of the
object space (Smith et al.’s “bottleneck” parameter).

Next, we considered the effect of varying the generalisation parameter,γ , as
shown in Figure 3. The higher the generalisation, the greater the stability,S,
of the compositional language and, conversely, the lower the generalisation, the
lower the stability.

Figure 4 shows how structuring the object space allows each meaning node
to generalise over a greater number of objects, increasing the stabilityS. As we
can see, the potential generalisation of each meaning node is not as effective, as
fewer objects are located in each generalisation area. The compositional meaning
node can only generalise across two objects in the unstructured object space
of Fig. 4(b).



(a) γ = 2 (b) γ = 0.5

Figure 3. Stability of the resulting languages when each agent is exposed to 10% of the object space,
with different degrees of generalisation: (a)γ = 2, (b)γ = 0.5.

(a) Structured space (b) Unstructured space

Figure 4. In a structured object space, each meaning node generalises over a greater number of
objects.

5. Conclusions

In this paper, we have addressed some criticisms of the well-known iterated
learning model of cultural language emergence, most notably the ‘mind-reading’
aspect of earlier ILM implementations. This was achieved using self-organising
maps to model each agent’s meaning space individually. The result is a closer
analogy to real cognitive spaces. Specifically, the meaningspaces are limited
in the amount of memory resource they have available, and arenot omniscient.
Rather they are private and unique to each agent. The SOM doesnot have a high
enough capacity to completely define the agents’ environment—forming a further
motivation to generalise. We have made explicit the generalisation parameter that
was previously implicit to earlier ILM’s and demonstrated its role in promoting
emergence of compositionality. As well as being unique to each individual, the
learning displayed by the SOM demonstrates another property of real language
learners: namely, change over time with each new encountered object.

These enhancements, or improvements, to the classical iterated learning
framework are gained without compromising the essential tenets of the paradigm.
As with the classical framework, stable, compositional languages emerge through
use (i.e., inter-agent communication related to structured object spaces) over



cultural time. Further, the poverty of stimulus encountered both in reality and in
our simulations remains essential in the evolution of a structured language, rather
than a ‘problem’ as in the Chomskyian tradition.

Although in this work, we have relaxed or removed some of the weakening
assumptions in the classical ILM, much remains to be done. There are still many
strong simplifications and abstractions concerning the nature of language and
communication utilised in our computer simulations. One important direction
for future work is to move towards acoustic (‘speech’) communication—having
agents produce and perceive sounds coupled to meaning, as suggested by Worgan
and Damper (2007).
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