Mid-back vowels in Girona Catalan: target vs. dynamic approaches

Eva Bosch-Roura (eva.bosch.roura@ub.edu)
 Universitat de Barcelona

1. Introduction

- Most Catalan varieties, including the Standard, have a seven-stressedvowel system. In the Girona diocese (NorthEastern Catalonia), however, mid back vowels
[0] and [0] seem to be either merged or merging.
- Data from 96 speakers in 12 designated survey areas within Girona has been collected
- Traditionally, vowels have been analysed at a single time point. But changes over time can provide important information on the characteristics of vowels, specially for mergers.
- This is a pilot study of the vowels obtained in one of the survey areas, to compare the results of target and dynamic approaches to vowel analysis.

2. Methods

2.1 Participants

Participant Gender Age $\rightarrow \begin{gathered}\mathrm{N}=4 \rightarrow \text { Pilot study! } \\ \text { Catalan-speaking fa- }\end{gathered}$ TB-FE1-D1 Female 15 milies
TB-FE1-H1 Male 16 • 2nd generation citi-TB-FE2-D1 Female 58 zens of the Ter-Brugent TB-FE2-H1 Male 65 (TB) deanery (Western Girona)

2.2 Interviews

- Recordings:

- Marantz PMD 620 MK II, 4.1 kHz SR

Pioneer DM-DV15 dynamic microphone

- Tests:
- Visual test (T1): 7 vowels $\times 7$ contexts

Reading task (T3): 7 vowels x 4 contexts x 3 repetitions

2.3 Data processing and analysis

- Orthographic transcription: Praat
- Adjusted automatised alignment: SPPAS
- Formant values extracted with a semiautomatic Praat script
- Normalisation, analysis and plotting: R

3. Results

3.1 Target approach: analysis at midpoint

Table 1: Unnormalised F1, F2, and F3 mean values at midpoint

	F1 (Hz)	Female	F3 (Hz)	F1 (Hz)	$\begin{gathered} \text { Male } \\ \text { F2 (Hz) } \end{gathered}$	F3 (Hz)	
$\mathrm{i}(\mathrm{n}=40)$	379	2422	3005	334	2200	2840	$i(n=39)$
$\mathrm{e}(\mathrm{n}=39)$	441	2175	2866	446	1926	2664	$\mathrm{e}(\mathrm{n}=38)$
$\varepsilon(n=39)$	598	2044	2940	589	1792	2644	ε \& (n=36)
a ($n=38$)	629	1595	2728	678	1362	2494	
\bigcirc ($n=41$)	479	1231	2733	498	1043	2454	$\bigcirc(n=40)$
\bigcirc ($n=36$)	480	1202	2702	496	1029	2478	0 ($n=36$)
$\mathrm{u}(n=39)$	391	1072	2650	380	948	2530	$\mathrm{u}(\mathrm{n}=37)$

Figure 1: Mean F1xF2 NEAREY1-normalised values at midpoint

[^0]
 Baker, A. (2006). Quantiting Dipthongs. A statisistial technicue for dis

Gu, C. (2014) "smonath
Gu, C. (2014) "St "Sooth ing Spline ANOVA Models: R R Package iss". In: Journal of Statisticial So

 Majors, T. (2a005)."Low Back Vowel Merger in Missouri Speech: Acoustic Descripition and Explana

 Recasens, D. and A. A. Espinosa (2009).".ispersion and variabilit in Catalan five and six periphera

3.2 Dynamic approach: Smoothing Spline Analysis of Variance (SS-ANOVA)

- SS-ANOVAs are used to compare curves, statistically. They tell us whether two formant trajecories are significantly different or not
Mean formant values were measured at the 20 $30,40,50,60,70$, and 80% of the vowel interval and the curve linking them together (each strong line) was fitted through the model.
The dashed lines around each mean curve rep-
Figure 2: SS-ANOVAs performed on Bark values for all (a) mid back and (b) mid front vowels

Figure 3: SS-ANOVAs performed on Bark values for all (a) T1 and (b) T3 mid back vowels

resent 95\% confidence intervals: if they over lap, the vowels are not significantly different
Bark values allow us to compare results among speakers, and SS-ANOVAs performed on them become easily readable plots: lines at the bottom represent F1 values (F3-F1); lines at the top, F2 values (F3-F2). Plus, Bark values are closely related to perception.

Figure 4: SS-ANOVAs performed on unnormalised Hz values for all mid back vowels by each speaker

- Mid back vowels are merged throughout their intervals, while mid front vowels are clearly distinct.
- There is less overlap in F2 than in F1 values For each individual speaker, [0] and [0] have almost the same exact F1 trajectory.
- Overlapping seems to diminish slightly towards the end of the trajectory: an analysis of coartic ulatory effects will be useful with further data
- More variability in T1 than in T3 results: further data will allow comparing speech styles.

[^1][^2]
[^0]: References

[^1]: Funding, acknowledgements, and where to find this poster

[^2]: \Rightarrow FPI2011 scholarship, project FFI2013- \quad Thanks to everyone who puts great R \quad Poster and other works available at 46987-C3-1-P (MICINN). and Praat scripts out on the Internet!

