Mid-back vowels in Girona Catalan: target vs. dynamic approaches

1. Introduction

Most Catalan varieties, including the Standard, have a seven-stressedvowel system. In the Girona diocese (North-Eastern Catalonia), however, mid back vowels

[o] and [o] seem to be either merged or merging. Data from 96 speakers in 12 designated survey areas within Girona has been collected.

Traditionally, vowels have been analysed at a single time point. But changes over time can provide important information on the characteristics of vowels, specially for mergers.

This is a pilot study of the vowels obtained in one of the survey areas, to compare the results of target and dynamic approaches to vowel analysis.

2. Methods

2.1 Participants

Participant	Gender	Age	
TB-FE1-D1	Female	15	
TB-FE1-H1	Male	16	
TB-FE2-D1	Female	58	
TB-FE2-H1	Male	65	

 \blacktriangleright N=4 \rightarrow Pilot study! Catalan-speaking fa-

milies

2nd generation citizens of the Ter-Brugent (TB) deanery (Western Girona)

2.2 Interviews

- *Recordings:*
- Marantz PMD 620 MK II, 4.1kHz SR
- Pioneer DM-DV15 dynamic microphone
- Tests:
- Visual test (T1): 7 vowels x 7 contexts
- Reading task (T3): 7 vowels x 4 contexts x 3 repetitions

2.3 Data processing and analysis

- Orthographic transcription: Praat
- Adjusted automatised alignment: SPPAS
- Formant values extracted with a semiautomatic Praat script
- Normalisation, analysis and plotting: R

Eva Bosch-Roura (eva.bosch.roura@ub.edu) Universitat de Barcelona

3. Results

3.1 Target approach: analysis at midpoint

 Table 1: Unnormalised F1, F2, and F3 mean values at

midpoint

		Female			Male		
	F1 (Hz)	F2 (Hz)	F3 (Hz)	F1 (Hz)	F2 (Hz)	F3 (Hz)	
i <i>(n=40)</i>	379	2422	3005	334	2200	2840	i <i>(n=39)</i>
e <i>(n=39)</i>	441	2175	2866	446	1926	2664	e <i>(n=38)</i>
ε (n=39)	598	2044	2940	589	1792	2644	ε (n=36)
a <i>(n=38)</i>	629	1595	2728	678	1362	2494	a <i>(n=38)</i>
ɔ (n=41)	479	1231	2733	498	1043	2454	ɔ (n=40)
o (n=36)	480	1202	2702	496	1029	2478	o (n=36)
u <i>(n=39)</i>	391	1072	2650	380	948	2530	u <i>(n=37)</i>

References

- Babel, M., G. Haber, and M. Mcauliffe. Unmerging mergers-in-progress through spontaneous phonetic imitation. URL: http://faculty.arts.ubc.ca/mbabel/BabelHaber%5C&McAuliffe%5C_NZ.
- Baker, A. (2006). Quantifying Dipthongs. A statistical technique for distinguishing formant contours. URL: http://www.adambaker.org/NWAV35SSANOVA.pdf.
- Boersma, P. and D. Weenink (2014). Praat: doing phonetics by computer.
- Freeman, V. (2014). "Bag, Beg, Bagel: Prevelar Raising and Merger in Pacific Northwest English". URL: http://depts.washington.edu/uwwpl/vol32/freeman%5C_2014.pdf. Fruehwald, J. (2010). "SS ANOVA". URL: http://www.ling.upenn.edu/~joseff/papers/fruehwald%
- 5C ssanova.pdf. Gu, C. (2014). "Smoothing Spline ANOVA Models: R Package gss". In: Journal of Statistical Soft-
- ware 58.5, pp. 1-25. URL: http://www.jstatsoft.org/v58/i05/. Herrick, D. (2003). "An Acoustic analysis of phonological vowel reduction in six varieties of Catalan".
- PhD. Santa Cruz University of California. Kendall, T. and E. R. Thomas (2012). vowels: Vowel Manipulation, Normalization, and Plotting. R package version 1.2. URL: http://cran.r-project.org/package=vowels
- Majors, T. (2005). "Low Back Vowel Merger in Missouri Speech: Acoustic Description and Explanation". In: American Speech 80.2, pp. 165–179. ISSN: 0003-1283. DOI: 10.1215/00031283-80-2-165.
- Nycz, J. and P. D. Decker (2006). A New Way of Analyzing Vowels: Comparing Formant Contours Using Smoothing Spline ANOVA. URL: http://research.library.mun.ca/655/. R Development Core Team (2014). R: A Language and Environment for Statistical Computing. R
- Foundation for Statistical Computing. Vienna, Austria. URL: http://www.r-project.org. Recasens, D. and A. Espinosa (2009). "Dispersion and variability in Catalan five and six peripheral vowel systems". In: Speech Communication 51.3, pp. 240-258.
- Wassink, A. B. and C. Koops (2013). Quantifying and Interpreting Vowel Formant Trajectory Information. Pittsburgh, PA. URL: http://faculty.washington.edu/wassink/NWAV2013/2013-Wassink-Koops-slides-7.pdf.
- Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York. ISBN: 978-0-387-98140-6. URL: http://had.co.nz/ggplot2/book.

Figure 3: SS-ANOVAs performed on Bark values for all (a) T1 and (b) T3 mid back vowels

Funding, acknowledgements, and where to find this poster

3.2 Dynamic approach: Smoothing Spline Analysis of Variance (SS-ANOVA)

SS-ANOVAs are used to compare curves, statistically. They tell us whether two formant trajectories are significantly different or not.

Mean formant values were measured at the 20, **30, 40, 50, 60, 70, and 80%** of the vowel interval, and the curve linking them together (each strong line) was fitted through the model.

The dashed lines around each mean curve rep-

resent 95% confidence intervals: if they overlap, the vowels are not significantly different. Bark values allow us to compare results among speakers, and SS-ANOVAs performed on them become easily readable plots: lines at the bottom represent **F1 values (F3-F1)**; lines at the top, **F2** values (F3-F2). Plus, Bark values are closely related to **perception**.

- tinct

- ▶ FPI2011 scholarship, project FFI2013-46987-C3-1-P (MICINN).
- Thanks to everyone who puts great R and Praat scripts out on the Internet!

Figure 4: SS-ANOVAs performed on unnormalised Hz values for all mid back vowels by each speaker

Mid back vowels are merged throughout their intervals, while mid front vowels are clearly dis-

There is less overlap in F2 than in F1 values. For each individual speaker, [0] and [2] have almost the same exact F1 trajectory.

• Overlapping seems to diminish slightly towards the end of the trajectory: an analysis of coarticulatory effects will be useful with further data. More variability in T1 than in T3 results: further data will allow comparing speech styles.