A first glimpse of the mid back merger in Girona Catalan

Eva Bosch-Roura (Universitat de Barcelona)
(3) http://www.ub.edu/GEVAD
\square eva.bosch.roura@ub.edu
@EvaBoschR

1. Introduction

- The vowel system of the majority of Catalan varieties, including the Standard, comprises seven stressed items.
- In the diocese of Girona, however, mid back vowels [0] and [0] seem to be either merged or merging.
- Data from 96 speakers in 12 designated survey areas within Girona has been collected.
- This is a pilot study of the vowels obtained in one of the survey areas, the Ter-Brugent deanery ($T B$), to observe the appearance or not of the [0$]-[0]$ merger and to identify possible variation patterns.

3. Results

(1) Unnormalised F1, F2, and F3 mean values at midpoint

Female									Male				
	$\mathrm{F} 1(\mathrm{~Hz})$	$\mathrm{F} 2(\mathrm{~Hz})$	$\mathrm{F} 3(\mathrm{~Hz})$	$\mathrm{F} 1(\mathrm{~Hz})$	$\mathrm{F} 2(\mathrm{~Hz})$	$\mathrm{F} 3(\mathrm{~Hz})$							
$\mathrm{i}(n=40)$	379	2422	3005	334	2200	2840	$\mathrm{i}(n=39)$						
$\mathrm{e}(n=39)$	441	2175	2866	446	1926	2664	$\mathrm{e}(n=38)$						
$\varepsilon(n=39)$	598	2044	2940	589	1792	2644	$\varepsilon(n=366)$						
$\mathrm{a}(n=38)$	629	1595	2728	678	1362	2494	$\mathrm{a}(n=38)$						
$\mathrm{o}(n=41)$	479	1231	2733	498	1043	2454	$\mathrm{o}(n=40)$						
$\mathrm{o}(n=36)$	480	1202	2702	496	1029	2478	$\mathrm{o}(n=36)$						
$\mathrm{u}(n=39)$	391	1072	2650	380	948	2530	$\mathrm{u}(n=37)$						

(2) Unnormalized F1xF2 midpoint values of all vowel tokens uttered by (a) female and (b) male TB speakers

4. Discussion

- Results point at a complete merger of [o] and [0] for our speakers in the area of TerBrugent.
- Difference between [0] and [0] raw and normalized formant values are negligible and Euclidean distances are clearly smaller for the mid back than for the mid front vowel pair.
Raw dispersion shows a clear overlap of the two mid back vowels, and Pillai-scores show that the difference between the [0] and [0] clusters is not significant.

2. Methods

2.1 Survey area

- The diocese of Girona (North-Eastern Catalonia) is a traditional division in Catalan dialectology, and specifically in literature regarding the [0]-[0] pair in the Girona region.
- The data used in this poster was collected in the Ter-Brugent deanery (TB), the most western of the 13 deaneries in the diocese.

2.2 Participants

P	er Age	
TB-FE1-D1	Female 15	n-speaking fami-
TB-FE1-H1	Male 16	lies
TB-FE2-D1	Female 58	- 2nd generation citizens
TB-FE2-H1	Male 65	the TB deanery

2.3 Interviews

- Recordings:
- Marantz PMD 620 MK II, 4.1kHz SR
- Pioneer DM-DV15 dynamic microphone
- Tests:
\triangleright Visual test (T1): 7 vowels $x 7$ contexts
- Reading task (T3): 7 vowels x 4 contexts $x 3$ repetitions

2.4 Data processing and analysis

- Orthographic transcription: Praat
- Adjusted automatised alignment: SPPAS
- Formant values extracted with a semi-automatic Praat script
- Normalisation, analysis and plotting: R
(3) Mean F1xF2 NEAREY1-normalised values at midpoint

(4) Euclidean Distances (d) between the NEAREY1normalised mean values of the (a) mid back and (b) mid front vowel pairs at midpoint
$d\left(\bar{x}_{v 1}, \bar{x}_{v 2}\right)=\sqrt{\left(F 1_{v 1}-F 1_{v 2}\right)^{2}+\left(F 2_{v 1}-F 2_{v 2}\right)^{2}}$
(a) $d\left(\bar{x}_{0}, \bar{x}_{0}\right)=0.015$
(b) $d\left(\bar{x}_{\mathrm{e}}, \bar{x}_{\varepsilon}\right)=0.336$
(5) Pillai scores for NEAREY1-normalised mean values of the (a) mid back and (b) mid front vowel pairs at midpoint
(a) $[\mathrm{o}]$ and $[\mathrm{o}]=0.002$
(b) $[\mathrm{e}]$ and $[\varepsilon]=0.665(* * *)$
- The Pillai-Bartlett trace is an output of a MANOVA which tells us about the difference between two clusters.
The smaller the Pillai score, the more similar the dispersion areas of two vowels are
(6) SS-ANOVAs performed on Bark values for all (a) mid back and (b) mid front vowels

(7) SS-ANOVAs performed on Bark values for all (a) T1 and (b) T3 mid back vowels

- SS-ANOVAs are used to compare curves, statistically. They tell us whether two formant trajectories are significantly different or not.
\triangleright Mean formant values measured at the 20, 30, 40, 50, 60, 70, and 80% of the vowel interval; curves fitted through the model.
Dashed lines: 95\% confidence intervals; if they overlap, the vowels are not significantly different.

References

aker, A. (2006). Quantifying Dipthongs. A statistical technique for distinguishing formant

 contours. URL: http://www.adambaker.org/NWAV35SSANOVA.pdfwald, J. (2010). "SS ANOVA". URL: http://www . ling . upenn . edu/~joseff/papers fruehwald\%5C_ssanova.pdf.
The Journal of the Acoustical Society of America in measures of vowel merger." In. lel.ed.ac.uk/~hhew/pillai.htm/
el.ed.ac. .uk/ /hlew/pillai.html.
Cerick, D. (2003). "An Acoustic analysis of phonological
Catalan". PDD . Santa Cruz University of California.
Explanation". In: American Speech 80.2, pp. 165-179
Nycz, J. and P. D. Decker (2006). A New Way of Analyzing Vowels Comparing Format Nycz, J. and P. D. Decker (2006). A New Way of Analyzing Vowels: Comparing Forman
Contours Using Smoothing Spline ANOVA. URL: http://research.library.mun.ca/655/, Recasens, D. and A. Espinosa (2009). "Dispersion and variability in Catalan five and six peripheral vowel systems". In: Speech Communication 51.3 , pp. 240-258. Iassink, A. B. and C. Koops (2013). Quantifyying and Interpreting Vowel Formant Trajectory
Information. Pittsburgh, PA. URL: http:/faculty. washington.edu/wassink/NWAV2013/ 2013-Wassink-Koops-slides-7.pdf.

