Glide phonotactics in varieties of Catalan (and Spanish)*

Clàudia Pons-Moll', Jesús Jiménez², Maria-Rosa Lloret ${ }^{1}$

${ }^{1}$ Universitat de Barcelona, ${ }^{2}$ Universitat de València

claudia.pons@ub.edu, jesus.jimenez@uv.es, mrosa.lloret@ub.edu
Radboud University
Nijmegen/Molenhoek
Going Romance 29
10 December 2015

Outline

1. Introduction
2. GOALS AND THEORETICAL ASSUMPTIONS
3. Majorcan Eastern Catalan: A multiple-way adjusting variety
4. Central Eastern Catalan: A non-adjusting variety (quick overview!)
5. CASTILIAN SPANISH: A ONE-WAY ADJUSTING VARIETY (quick overview!)
6. Final remarks

1 Introduction

- The palatal glide $/ \mathrm{j} /$ and the labiovelar glide $/ \mathrm{w} /$ display a vast array of variation in Catalan \& in Castilian Spanish, depending on a) the syllabic position and b) the segmental context in which they occur.
- This variation comprises various processes of strengthening and weakening:

[^0](1) Summary of glide outcomes

	Majorcan Eastern Catalan	Central Eastern Catalan	Castilian Spanish
	Preservation re[j], ca[w] 'king', '(s)he falls'	$\begin{aligned} & \text { Preservation } \\ & \text { re[j], ca[w] } \\ & \text { 'king', '(s)he falls' } \end{aligned}$	Preservation re[j], fa[w]na 'king', 'fauna'
	Preservation [j]ogurt, [w]eb 'yogurt', ‘website’	Preservation [j]ogurt, [w]eb 'yogurt', 'website’	Strengthening [畩]ogur, [gw]eb 'yogurt', 'website'
	Weakening, conditioned deletion / Deletion fe[e]a, fi[Ø]a / fe[Ø]a, fi[Ø]a '(s)he was doing', 'daughter'	Preservation fe[j]a '(s)he was doing'	Strengthening ma[j]o 'May'
	Strengthening / Preservation, conditioned deletion $\mathrm{ca}[\mathrm{v}] \mathrm{en} / \mathrm{ca}[\mathrm{w}] \mathrm{en}$, bo[Ø]et 'they fall', 'ox DIM.'	Preservation ca[w]en 'they fall'	Strengthening a[zw]ecar 'to hollow out'

2 GOALS AND THEORETICAL ASSUMPTIONS

2.1 GOALS

- To outline a typological comparison of the glide phonotactic patterns attested across some Catalan and Spanish varieties. (Main focus $=$ Majorcan Eastern Catalan)
- To suggest a formal account of these patterns, framed within Optimality Theory, and more specifically within the Split Margin approach (Baertsch 2002) to syllable organization.
- To show that, to formalize the whole variation, both a) markedness constraints related to intrasyllabic organization (Baerstch 2002) and b) markedness constraints referring to the harmony of segments in intervocalic position (Kirchner 1998; Uffmann 2005) are necessary.

2.2 THEORETICAL ASSUMPTIONS

2.2.1 Assumptions about the sonority scale

(2) Assumed sonority scale

GLIDE $_{[- \text {HIGH] }}>$ GLIDE $_{[+ \text {HIGH }]}>$ LIQUIDS $>$ NASALS $>$ FRICATIVES $>$ STOPS
([e] \& [o])
([j] \& [w])
$\xrightarrow[\text { higher sonority }]{\longrightarrow}$
(3) Sonority distinctions (relevant for Majorcan Catalan)

- $\quad[\mathrm{e}] \&[\mathrm{o}]=$ centralized and open (non-high) glides, i.e. GLIDE $_{[-\mathrm{HIGH}]}$
- [j] \& [w] = peripheral and closed (high) glides, i.e. GLIDE $_{[+ \text {HIGH }]}$
[For the articulatory and the acoustic differences between [j] and [e], see Mascaró \& Rafel (1981) and Recasens \& Espinosa (2005).]

2.2.2 Formal assumptions

(4) The Split Margin approach to syllable organization

The Split Margin approach refines Prince \& Smolensky's hierarchy (1993/2004) by establishing a straightforward correlation between the constituents of the syllable. This hierarchy identifies three types of constituents that behave alike (5) and which are logically targeted by three distinct universal hierarchies (6): M1, which stands for a singleton onset, for the first element of a complex onset and for the second element of a complex coda; M2, which stands for a singleton coda, for the second element of a complex onset and for the first element of a complex coda; and P, standing for the peak.
(5) Associated syllabic constituents (Baertsch 1998, 2002)

M1
[M2] P M2
[M1]
[...] = irrelevant here
(6) Constraint hierarchies affecting the margins (M1 \& M2)

- The constraint hierarchy governing the M1 constituent gives preference to low sonority segments (6a):
a. Constraint hierarchy for M1 ($* \mathrm{M} 1 / \lambda$)

*M1/LIQUID >> *M1/NASAL >> *M1/FRICATIVE >> *M1/STOP
- The constraint hierarchy governing the M2 constituent gives preference to high sonority segments (6b):
b. Constraint hierarchy for M2 (*M2/ $)$
*M2/ STOP >> *M2/ FRICATIVE >> *M2/NASAL >> *M2/LIQUID >>
*M2/ GLIDE ${ }_{[+ \text {HIGH] }} \gg$ *M2/ GLIDE $_{[-\mathrm{HIGH}]}$
(7) Segmental preferences in intervocalic position

In intervocalic position (and also in postvocalic and preglide position), elements of high sonority are preferred, because this simplifies the articulatory gesture (Kirchner 1998; Uffmann 2005). (\rightarrow Involved in processes of lenition $\&$ in the quality of the epenthetic segments.) \rightarrow Smooth VCV transitions.
(8) Constraint hierarchy for M1 in intervocalic position ($* \mathrm{~V} \lambda_{\mathrm{M} 1} \mathrm{~V}$)

- The constraint hierarchy governing the VM1V constituent gives preference to high sonority segments as well (8a):
a. Constraint hierarchy for intervocalic M1 ($* \mathrm{~V} \lambda_{\mathrm{M} 1} \mathrm{~V}$)

$* \mathbf{V G L I D E}_{[+\mathrm{HIGH}], \mathrm{M} 1} \mathbf{V} \gg$ VGLIDE $_{[-\mathrm{HIGH}], \mathrm{M} 1} \mathbf{V}$

Note, how...

- *M1/GLIDE [-High] \gg *M1/ GLIDE $_{[+\mathrm{HiGH}]}$ generally favors [j] \& [w]
- *VGLIDE ${ }_{[+H I G H], ~ M i} \mathbf{V} \gg$ VGLIDE $_{[-\mathrm{High}], \mathrm{Mi}} \mathbf{V}$ locally favors [e] \& [o

In intervocalic position.
Crucial interaction between both constraint hierarchies

3 MAJORCAN CATALAN: A MULTIPLE-WAY ADJUSTING VARIETY

3.1 Data
[Data from Bibiloni (1983), Dols (2000) and personal inquiries]

3.1.1 The palatal glide

\rightarrow SIMPLEX ONSET POSITION

(9) Word-initial position (mostly loanwords) \rightarrow preservation

Most varieties		Some other varieties	
[j]anqui	'Yankee'	[3]ogurt	'yogurt'
[j]ate	'yacht'	[3]ot	'yacht'
[j]ode	'iodine'		
[j]ogurt	'yogurt'		

(10) Intervocalic position \rightarrow weakening / deletion (in contact with non-front vowels)

a. Varieties A	b. Varieties		
bada[e]a	bada[Ø]a	'(s)he yawns'	(cf. bada[j], 'I yawn')
embu[e]a	embu[Ø]a	'(s)he mixes up'	(cf. embu[j], 'I mix up')
ta[e]a	ta[Ø]a	'(s)he cuts'	(cf. $t a[\mathrm{j}], \mathrm{I}$ cut')
du[e]a	du[Ø]a	'(s)he was bringing'	(cf. $d u[\mathrm{j}] s$, 'you bring')
fe[e]a	fe[Ø]a	'(s)he was doing'	(cf. $f e[\mathrm{j}] s$, 'you do')

(11) Intervocalic position \rightarrow deletion
(in contact with the front vowel i)

All varieties (A, B)
fi[Ø]a
'daughter'
(cf. $f i[\mathrm{j}]$, but also $f i[\emptyset]$, 'son')
coni[Ø]era
'burrow'
(cf. coni $[\mathrm{j}]$, but also coni $[\varnothing]$, 'rabbit')
ve[Ø]íssim
old MASC. SUPERL.' (cf. ve[j], 'old MASC.')
embu[Ø]i
'he mixes up SUBJ.' (cf. embu[j], 'I mix up')
(12) Intervocalic position \rightarrow deletion (and weakening)
(in contact with the front vowel e)

All varieties (A, B)	Varieties A		
ve[Ø]a	(vella, 'old FEM.')	ve[e] $]$ ura	'old age'
ve[Ø]et	(vellet, 'old man DIM.')	agu[e]er	'thread'
ve[Ø] ona	(vellona, 'old woman DIM.')		

(13) Intervocalic position (clitic sequences) \rightarrow weakening / deletion (as in (10))

Varieties A	Varieties B	
No hi [e] ha ningú	No hi [Ø] ha ningú	'There is nobody'
No hi [e] he anat, a París (\neq No he anat a París)	No hi [Ø] he anat, a París (= No he anat a París)	'I didn't go, to Paris' 'I didn't go to Paris'
hi [วe] ${ }^{\text {a }}$ ha	hi [əØ] ha	'there is'
hi [əe] hagi	hi [əØ] hagi	'there is SUBJ.'

\rightarrow Productivity of the processes of weakening and deletion

(14) Morphophonemic alternations (inflection \& derivation)
$d u[e] a \sim d u[\varnothing] a$ 'I was bringing'
vs.
$\mathrm{du}[\mathrm{j}] \mathrm{s}, \mathrm{du}[\mathrm{j}] \mathrm{m}$
you, we bring'
$\mathrm{ta}[\mathrm{e}]$ et $\sim \mathrm{ta}[Ø]$ et 'cut DIM.'
vs. $\quad \mathrm{ta}[\mathrm{j}], \mathrm{ta}[\mathrm{j}] \mathrm{s}$ 'cut, cuts'
(15) Phrasal phonology
ma[e] he dit
'I have never said'
vs.
$\mathrm{ma}[\mathrm{j}]$
'never'
(16) Loanwords and L2 phonology
Juga a la Pla[e] ara
s. $\quad \mathrm{Pla}[\mathrm{j}]$
'Play with the Play now'
'Play (Station) ${ }^{\prime}$

Estàs on [faerc]
'You are on fire'
\rightarrow CODA POSITION

(17) Word-final and word-internal position

All varieties (A, B)			
ma[j]	'never'	esca[j]re	'corner'
re[j]	'king'	ca[j]re	'aspect'

3.1.2 The labiovelar glide

\rightarrow ONSET POSITION

(18) Word-initial position (mostly loanwords) \rightarrow preservation

All varieties (I, II)	
[w]ep!	'hey!'
[w]eb	'website'
[w]isky	'whisky'
[w]atsapp	'whatsapp'
[w]ifi	'Wi-Fi'

(19) Intervocalic position \rightarrow preservation / "strengthening"

Varieties I	Varieties II		
ca[w]en ca[v]en 'they fall'	(cf. ca[w], '(s)he falls')		
di[w]en	di[v]en	'they say'	(cf. $d i[\mathrm{w}]$, '(s)he says)
cre[w]eta	cre[v]eta	'cross DIM.'	(cf. cre[w], 'cross')
pe[w]et	pe[v]et	'foot DIM.'	(cf. $p e[\mathrm{w}]$, 'foot')

(20) Intervocalic position (across words) \rightarrow preservation / "strengthening"

Varieties I	Varieties II		
es me[w] amic	es me[v] amic	'my friend'	(cf. es me[w], 'my')
bla[w] i blanc	bla[v] i blanc	'blue and white'	(cf. bla[w], 'blue')

(21) Intervocalic position \rightarrow deletion / "strengthening"
(in contact with a labial mid back vowel)

Varieties I	Varieties II		
bo[Ø]et	bo[v]et	'ox DIM.'	(cf. bo[w], 'ox')
po[Ø]al	po[v]al	'bucket'	(cf. po[w], 'well')
es me[Ø] homo	es me[v] homo	'my husband'	(cf. es me[w], 'my')
co[Ø] un poc	co[v] un poc	'(s)he cooks a little'(cf. co[w], '(s)he cooks')	
po[Ø] immens	po[v] immens	'huge well'	(cf. $p o[\mathrm{w}]$, 'well')

\rightarrow CODA POSITION

(22) Word-final and word-internal position \rightarrow preservation

All varieties (I, II)			
bo[w]	'ox'	co[w]re	'to cook'
po[w]	'well'	mo[w]re	'to move'
me[w]	'my'	pa[w]ta	'pattern'

\rightarrow Productivity of the process of strengthening

Dubious: see (31).

3.2 Descriptive generalizations and analysis

Intervocalic position ($\mathrm{V}_{\mathrm{M} 1} \mathrm{~V}$)

3.2.1 Varieties with weakening of the palatal glide (see 10a: bada[e $]$ a) and conditioned (apparent) deletion (see 11: fi[Ø] a; see 12: ve[Ø]a)

Descriptive generalization: A process of weakening applies intervocalically, unless the palatal glide and the adjacent vowel are similar enough (i.e. share the feature [palatal]), in which case a process of fusion ("apparent deletion") is triggered.
(23) Weakening in contact with a non-front (non-palatal) vowel

$\mathrm{f} / \mathrm{\partial}_{1} \mathrm{j}_{2}+$ 2/	$\frac{\underset{y}{x}}{\substack{\grave{x}}}$		$\frac{\underset{i}{\mid}}{\stackrel{y}{\mid}}$	$\begin{aligned} & \text { n } \\ & \vdots \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { Hy } \\ & \underset{\sim}{2} \\ & 0 \end{aligned}$			
a. [$\left.\partial_{1} \cdot \mathrm{j}_{2} \mathrm{\partial}\right]$		*!						*
b b. [∂_{1}. $\mathrm{e}_{2} \partial$]						*	*	
c. [$\left.\partial_{1} . \partial\right]$	*!				*			
d. [$\partial_{1,2} . \partial$]			*!		*			

A. Partial rankings and ranking arguments:

A1. $* \mathrm{VGLIDE}_{[+\mathrm{HIGH}], \mathrm{M} 1} \mathrm{~V} \gg * \mathrm{M}_{1 / \mathrm{GLIDE}_{[- \text {нIGH] }}}, * \mathrm{VGLIDE}_{[-\mathrm{HIGH}], \mathrm{M} 1} \mathrm{~V}$ \rightarrow weakening over preservation (23b vs. 23a)
A2. MAX-[PAL] >> *M1/GLIDE ${ }_{[-\mathrm{HIGH}]}, * \mathrm{VGLIDE}_{[- \text {HIGH], мl }} \mathrm{V}$ \rightarrow weakening over deletion (23b vs. 23c)
 \rightarrow weakening over fusion (23b vs. 23d)
A4. ID-[PAL]
\rightarrow fusion only possible when both adjacent segments share the
feature [palatal] (see the following tableau)
(24) Fusion (apparent deletion) in contact with a front (palatal) vowel

$\mathrm{f} / \mathrm{i}_{1} \mathrm{j}_{2}+\mathrm{r} /$					$\begin{aligned} & \text { 銞 } \\ & \vdots \end{aligned}$			
a. $\left[\mathrm{i}_{1} . \mathrm{j}_{2} \mathrm{\partial}\right]$		*!						*
b. [$\mathrm{i}_{1} . \mathrm{e}_{2} \mathrm{\rho}$]						*	*!	
c. [$\left.i_{1}, \partial\right]$	*!				*			
(5) d. [$\left.\mathrm{i}_{1,2} \cdot \mathrm{\partial}\right]$					*			

B. Partial rankings and ranking arguments:

B1. MAX-[PAL], *VGLIDE $\left.{ }_{[+\mathrm{HI}], \mathrm{M} 1} \mathrm{~V}, \mathrm{ID}^{[\mathrm{P} A L}\right]$
\rightarrow tie between weakening and fusion (24 b vs. 24 d)
B2. ONSET, *M1/GLIDE ${ }_{[- \text {HIGH }]}$, VVLIDE $_{[- \text {HIGH }], \text { M1 }} \mathrm{V}$ (emergence of $* \mathrm{M}_{\left.1 / \mathrm{GLIDE}_{[- \text {-нIGH] }}, * \mathrm{VGLIDE}_{[-\mathrm{HIGH}], \mathrm{M1}} \mathrm{~V}\right) ~}^{\text {) }}$
\rightarrow fusion over weakening (24 d vs. 24 b)
3.2.2 Varieties with generalized deletion (see 10b: bada[Ø]a; 11: fi[Ø]a, 12: ve[Ø]a)

Descriptive generalization: A process of deletion applies intervocalically, unless the palatal glide and the adjacent vowel are similar enough (i.e. share the feature [palatal]), in which case a process of fusion is triggered. (The last process is identical to the one found in varieties with weakening / fusion.)
(25) Deletion in contact with a non-front (non-palatal) vowel

$\mathrm{f} / \partial_{1} \mathrm{j}_{2}+2 /$		$\frac{\underset{i}{i}}{\frac{1}{i}}$	$\begin{aligned} & \bar{y} \\ & \vdots \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { 苟 } \\ & \text { K } \end{aligned}$	$\begin{aligned} & \text { 需 } \\ & \stackrel{\rightharpoonup 1}{1} \\ & \stackrel{y}{V} \\ & \sum_{*}^{1} \end{aligned}$			
a. [$\left.\partial_{1} \cdot \mathrm{j}_{2} \mathrm{\partial}\right]$	*!							*
b. [$\left.\partial_{1}, \mathrm{e}_{2} \partial\right]$					*	*!		
Trac. [$\partial_{1} . \partial$]				*			*	
d. [$\partial_{1,2} \cdot 2$]		*!		*				

C. Partial ranking and ranking argument:

C1. Demotion of MAX-[PAL]:
MAX-[PAL] >> *M1/GLIDE [-HIGH] *VGLIDE [-HIGH], M1 $\mathrm{V} \gg$ MAX-[PAL]
\rightarrow deletion over weakening (25 c vs. 25 b)
C2. ID-[PAL] prevents from fusion
(26) Fusion in contact with a front (palatal) vowel

$\mathrm{f} / \mathrm{i}_{1} \mathrm{j}_{2}+\mathrm{r} /$		$\frac{\underset{1}{\grave{1}}}{\frac{1}{i}}$	$\begin{aligned} & \text { II } \\ & 0 \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { Win } \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & \text { 토 } \\ & \stackrel{y 11}{4} \\ & \stackrel{y}{1} \\ & \underset{\sim}{i} \end{aligned}$			
a. [$\left.\mathrm{i}_{1} \cdot \mathrm{j}_{2} \mathrm{z}\right]$	*!							*
b. [$\mathrm{i}_{1} . \mathrm{e}_{2} \mathrm{\rho}$]					*	*!		
c. [$\left.i_{1} . \partial\right]$				*			*!	
d. $\left.{ }^{\text {d }} \mathrm{i}_{1,2} .2\right]$				*				

D. Partial ranking and ranking argument:

D1. Emergence of MAX-[PAL]
\rightarrow fusion over deletion (26d vs. 26c)

Summary:

- In contact with a non-front vowel \rightarrow different rankings / different outcomes (weakening vs. deletion)
- In contact with a front-vowel \rightarrow different rankings / identical outcomes (fusion $=$ fusion)
3.2.3 Varieties with preservation of the labiovelar glide (19a: ca[w]en; 20a: es me[w] amic) and conditioned deletion (21a: bo[Ø]et; es me[Ø] homo).

Descriptive generalization: There is preservation intervocalically, unless the labiovelar glide and the adjacent vowel are similar enough (i.e. share the feature [labial]), in which case a process of fusion is triggered.

Reminder! Different fates for the palatal glide intervocalically, relevant here:
\rightarrow Varieties with weakening of $/ \mathrm{j} /$ and preservation of $/ \mathrm{w} /$: Same ranking as in (23), for the weakening of the palatal glide, plus $*[0]$ and MAX-[PAL] \rightarrow MAX-[LAB]; ID-[PAL] \rightarrow ID-[LAB].
\rightarrow Varieties with deletion of $/ \mathrm{j} /$ and preservation of $/ \mathrm{w} /$: Same ranking as in (25), for the deletion of the palatal glide, plus $*[0]$ and MAX-[PAL] \rightarrow MAX-[LAB]; ID-[PAL] \rightarrow ID[LAB] BUT NO demotion of MAX-[LAB].

Note how this last pattern (with deletion of $/ \mathrm{j} /$ and preservation of $/ \mathrm{w} /$) makes it necessary to split $\operatorname{MAX}(\mathrm{F})$ into $\operatorname{MAX}-[\mathrm{PAL}]$ and $\operatorname{MAX}-[\mathrm{LAB}]$ (i.e. they need to be freely rankable in order to explain the opposite behaviors).
（27）Preservation（in contact with a non－labial mid back vowel）

$\mathrm{p} / \partial_{1} \mathrm{~W}_{2}+\mathrm{o} / \mathrm{t}$	\％${ }^{\text {or }}$	$\begin{aligned} & \underset{\substack{\infty \\ \vdots}}{\substack{x}} \\ & \underset{y}{c} \end{aligned}$			$\begin{aligned} & \text { n } \\ & \vdots \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { 銞 } \\ & 0 \end{aligned}$			
a．［ $\partial_{1}, \mathrm{~W}_{2} \partial$ ］			＊						＊
b．［ $\partial_{1} \cdot \mathrm{O}_{2} \mathrm{\partial}$ ］	＊						＊	＊！	
c．［ $\left.\partial_{1} . \partial\right]$		＊				＊！			
d．［ $\partial_{1,2} \cdot \partial$ ］				＊		＊！			

E．Partial rankings and ranking arguments：
E1．＊［o］，MAX－［LAB］，＊ VGLIDE $_{[+ \text {HIGH］，m1 }} \mathrm{V}, \mathrm{ID}-[L A B]$
\rightarrow tie between preservation（27a），weakening（27b），deletion（27c）and fusion （27d）

E2．ID－［LAB］blocks fusion
E3．Emergence of ONSET，$* \mathrm{M}_{1 / \mathrm{GLIDE}_{[-\mathrm{HIGH}]}} * \mathrm{M}_{1 / \mathrm{GLIDE}_{[+ \text {HIGH］}}}$ \rightarrow preservation（27a）over other strategies（27b，c，d）
E4. ONSET is decisive for the first time.
（28）Fusion（＂apparent deletion＂）in contact with a labial mid back vowel

$\mathrm{b} / \mathrm{o}_{1} \mathrm{~W}_{2}+$ ว／t	＂or	$\underset{\substack{\infty \\ \underset{y}{x} \\ \underset{y}{x} \\ \hline}}{\substack{\infty}}$		$\underset{\underset{i}{\underset{1}{i}}}{\stackrel{y}{c}}$	$\begin{aligned} & \text { ज } \\ & \vdots \\ & \text { i } \\ & \text { i } \end{aligned}$	$\begin{aligned} & \text { 哥 } \\ & \underset{0}{2} \end{aligned}$			
a．$\left[\mathrm{o}_{1}, \mathrm{w}_{2} \mathrm{\partial}\right.$ ］			＊！						＊
b．$\left[\mathrm{o}_{1} . \mathrm{O}_{2} \mathrm{z}\right]$	＊！						＊	＊	
c．［ $\mathrm{O}_{1} \cdot \mathrm{\rho}$ ］		＊！				＊			
S． d ．$\left[\mathrm{o}_{1,2} \cdot 2\right]$						＊			

F．Partial rankings and ranking arguments：
F1．＊VGLIDE ${ }_{[+\mathrm{HI}], \mathrm{M} 1} \mathrm{~V} \gg$ OnSET
\rightarrow fusion（28d）over preservation（28a）
F2．ID－［LAB］satisfied by the candidate with fusion

3．2．4 Varieties with＂apparent strengthening＂of the labiovelar glide intervocalically， without cases of deletion（19b：ca［v］en；20a：es me［v］amic；21a：bo［v］et；es me［v］homo）．
（29）Ranking paradox：
\rightarrow Ranking for the weakening of the palatal glide：
$* \mathbf{V G L I D E}_{[+\boldsymbol{H} G \mathrm{GH}], \mathbf{M 1}} \mathbf{V} \gg * \mathrm{M}_{1} / \mathrm{GLIDE}_{[-\mathrm{HIGH}]}, * \operatorname{VGLIDE}_{[-\mathrm{HIGH}], \mathrm{M}} \mathrm{V}$
\rightarrow Universal ranking（fixed）：
$*^{V^{2}}$ Vricative $_{\text {M1 }} \mathbf{V} \gg$ VGLIDE $_{[+\mathrm{HIGH}], \mathrm{M} 1} \mathbf{V}$
\rightarrow By transitivity：

（Weakening is always better than strengthening）
\rightarrow Considering $*[0] \ldots$ and given $*$ VFricative $_{\mathrm{M} 1} \mathrm{~V} \gg \operatorname{VGLIDE}_{[+\mathrm{HIGH}], \mathrm{M} 1} \mathrm{~V}$
（Preservation is always better than strengthening，and weakening）
（30）Illustration：universal ranking

$\mathrm{p} / \partial_{1} \mathrm{w}_{2}+2 / \mathrm{t}$		$\frac{\sigma^{c}}{*}$	$4^{I I^{[I L H+]}} 4 a_{I} 0_{1}$	$\begin{aligned} & \text { I } \\ & 0 \\ & \text { i } \\ & \text { í } \end{aligned}$	$\begin{aligned} & \text { 哥 } \\ & \vdots \\ & 0 \end{aligned}$			
＊			＊					＊
b．［ $\left.\partial_{1}, \mathrm{O}_{2} \partial\right]$		＊				＊	＊！	
：c．$\left[\partial_{1}, \mathrm{~V}_{2} \mathrm{O}^{\text {d }}\right.$ ］	＊！			＊				

(31) Some empirical observations:

- The strengthening of the labiovelar glide in intervocalic position is a dubiously productive process (at least synchronically), since loans or learned words such as Hawaii, Power or PowerPoint are usually realized with [w]. (Also across words: Glasgow ha guanyat 'Glasgow has won'.)
- This strengthening is not common in word-initial position, where it would be more justifiable (see 18) because the affected segment is not preceded by a vowel.
- There is an intricate diachronic evolution of words containing the alternation [v] ~ [w]:
- first stage: intervocalic [v] (be[v]en 'they drink');
- second stage: intervocalic [w] (be[w]en, as in other Catalan varieties), probably by analogy to the form $b e[w]$ '(s)he drinks';
- third stage: intervocalic [v] (be[v]en), maybe because of a previous stage with *M1/GLIDE ${ }_{[+\mathrm{HI}]} \gg$ VFRIC $_{\mathrm{M} 1} \mathrm{~V}$ (cf. quality of the epenthetic consonants: $r a[\mathrm{v}] o ́$ 'reason'; lle[v]ó ‘lion', etc.)
(32) Subsequent assumptions about the UR:
- We assume that the underlying representation of forms showing the alternation [w] ~ [v] (as $d i[\mathrm{w}] \sim d i[\mathrm{v}] e n$) displays two allomorphs, one with a final voiced labiodental fricative (/div/) and the other with a final labiovelar glide (/diw/).
- All instances of [v] in intervocalic position (alternating with [w] in word-final position) can be interpreted allomorphically: cantau $[\mathrm{w}]$ 'sing 2P PL.', cantau $[\mathrm{v}]$ això ‘sing 2P PL. this', cantau-ho [v] 'sing 2P PL. it’ (2P PL.: /w/ ~/v/).
- We presume that the two allomorphs appear with the lexical precedence 'fricative $>$ glide', as in $\{/ \mathrm{div} />/ \mathrm{diw} /\}$ for the stem of diuen (on lexically ordered allomorphs, see Bonet et al. 2007 and Mascaró 2007).
\rightarrow There is an independent argument for giving precedence to the fricative: the labiodental fricative is the variant appearing in onset position, which, as known, is a neutral position that favors faithfulness and thus avoids alterations (Beckman 2001).
\rightarrow The preference for the dominant allomorph is ensured by the constraint PRIORITY: "Respect lexical priority (ordering) of allomorphs" (Bonet et al. 2007: 902; Mascaró 2007: 726).
(33) Selection of the allomorph with final /v/

$/\left\{\operatorname{div}_{1}>\operatorname{diw}_{2}\right\}+$ n/	$\begin{aligned} & z \\ & \\ & \frac{2}{2} \\ & \end{aligned}$		$\frac{0 r}{*}$		n 0 0 \vdots \vdots	$\begin{aligned} & \text { 哥 } \\ & \underset{0}{Z} \end{aligned}$	$\begin{gathered} \text { ㅌ } \\ \frac{1}{n} \\ \text { E } \\ \vdots \\ \sum_{*}^{2} \end{gathered}$	$\begin{gathered} 7 \\ \hline \end{gathered}$	
a. ['di.vən] ${ }_{1}$		*							
b. ['di.wən] ${ }_{2}$	*!			*					*
c. ['di.oən] ${ }_{2}$	*!		*				*	*	

(Simplified tableau)
F. Ranking argument:

F1: PRIORITY \gg *VFRICATIVE ${ }_{M 1} V$
\rightarrow selection of the preferred allomorph, in spite of having an intervocalic fricative

Word－initial position（\＃\＃$\lambda_{M 1} V$ ）

（34）Varieties with intervocalic weakening and word－initial preservation of $/ \mathrm{j} /+$ intervocalic preservation and word－initial preservation of／w／

／ $\mathrm{j}_{1} \mathrm{O}_{2} /$ gurt		$\frac{\underset{i}{\underset{1}{i}}}{\frac{1}{i}}$	$\begin{aligned} & \bar{n} \\ & \vdots \\ & \vdots \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { Hy } \\ & \substack{0 \\ 0} \end{aligned}$		
Fa．$\left[\mathrm{j}_{1} \mathrm{O}_{2}\right]$						＊
b．［ $\left.\mathrm{e}_{1} \mathrm{O}_{2}\right]$					＊！	
c．$\left[\mathrm{O}_{2}\right]$	＊！			＊		
d．$\left[3_{1} \mathrm{O}_{2}\right]$			＊！			
e．$\left[\mathrm{d}_{31} \mathrm{O}_{2}\right]$			＊！			
f．$\left[\mathrm{f}_{1} \mathrm{O}_{2}\right]$			＊！			

$/ \mathrm{w}_{1} \varepsilon_{2} / \mathrm{b}$	\％		$\stackrel{\underset{1}{\underset{1}{c}}}{\stackrel{\sim}{1}}$	$\begin{aligned} & \tilde{y} \\ & 0 \\ & \vdots \\ & i \\ & \vdots \end{aligned}$	$$		
a．$\left[\mathrm{w}_{1} \varepsilon_{2}\right]$							＊
b．$\left[\mathrm{O}_{1} \varepsilon_{2}\right]$	＊！					＊	
c．$\left[\varepsilon_{2}\right]$		＊！			＊		
d．$\left[\mathrm{v}_{1} \varepsilon_{2}\right]$				＊！			

G．Partial ranking and ranking arguments：
G1．Emergence of the＊M1／λ hierarchy
G2．ID－［－cons］＞＞＊M1／GLIDE ${ }_{[+\mathrm{HI}]} \gg \ldots \gg{ }$ M1／FRIC
\rightarrow preservation（34a［1 ${ }^{\text {st }} \& 2^{\text {nd }}$ tableaux］$)$ over strengthening strategies $\left(34 \mathrm{~d}\left[1^{\text {st }}\right.\right.$ $\& 2^{\text {nd }}$ tableaux $], \mathrm{e}, \mathrm{f}$ ）
（35）Varieties with intervocalic deletion and word－initial preservation of $/ \mathrm{j} /+$ intervocalic preservation and word－initial preservation of／w／

／ $\mathrm{j}_{1} \mathrm{O}_{2} /$ gurt		$\begin{aligned} & \text { İ } \\ & \vdots \\ & \vdots \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { Z } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 星 } \\ & \stackrel{11}{1} \\ & \underset{*}{1} \\ & \sum_{*}^{1} \end{aligned}$	$\begin{aligned} & \underset{\substack{x}}{\stackrel{y}{x}} \\ & \underset{y}{c} \end{aligned}$	
ar．$\left[\mathrm{j}_{1} \mathrm{O}_{2}\right]$						＊
b．$\left[\mathrm{e}_{1} \mathrm{O}_{2}\right]$				＊！		
c．$\left[\mathrm{O}_{2}\right]$			＊！		＊	
d．$\left[31 \mathrm{O}_{2}\right]$		＊！				
e．$\left[\bar{d}_{3} \mathrm{O}_{2}\right]$		＊！				
f．［ ${ }_{1} \mathrm{O}_{2}$ ］		＊！				

$/ \mathrm{w}_{1} \varepsilon_{2} / \mathrm{b}$	$\frac{\sigma^{c}}{*}$	$\begin{aligned} & \underset{\substack{\infty \\ \vdots}}{\substack{x}} \end{aligned}$	$\underset{i}{\underset{j}{i}}$	$\begin{aligned} & \text { I } \\ & 0 \\ & \text { i } \\ & \text { í } \end{aligned}$	$\begin{aligned} & \text { 荀 } \\ & \underset{0}{2} \end{aligned}$		
csa．$\left[\mathrm{w}_{1} \varepsilon_{2}\right]$							＊
b．$\left[\mathrm{o}_{1} \varepsilon_{2}\right]$	＊！					＊	
c．$\left[\varepsilon_{2}\right]$		＊！			＊		
d．$\left[\mathrm{v}_{1} \varepsilon_{2}\right]$				＊！			

H．Partial ranking and ranking arguments：
H1．Emergence of the $* \mathrm{M} 1 / \lambda$ hierarchy
H2．ID－［－cons］＞＞＊M1／GLIDE ${ }_{[+ \text {HI］}} \gg \ldots \gg *^{*} 1 /$ FRIC \rightarrow preservation（35a［1 ${ }^{\text {st }} \& 2^{\text {nd }}$ tableaux］$)$ over strengthening strategies（ $35 \mathrm{~d}\left[1^{\text {st }}\right.$ $\& 2^{\text {nd }}$ tableaux $\left.], e, f\right)$

Word-final position ($\lambda_{\mathrm{M} 2}$)

(36) Selection of the allomorph with final/w/ (cf. (33))

$/\left\{\operatorname{div}_{1}>\operatorname{diw}_{2}\right\} /$		$\begin{aligned} & \underset{Z}{z} \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \text { I } \\ & \vdots \\ & i \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { 寻 } \\ & \text { 首 } \end{aligned}$		
a. ['div] ${ }_{1}$	*!					
b b. ['diw] 2		*			*	
c. $[\text { 'dio }]_{2}$		*		*!		*

I. Partial ranking and ranking arguments:

I1. Emergence of the $* \mathrm{M} 2 / \lambda$ hierarchy
I2. *M2/FRICATIVE \gg PRIORITY
\rightarrow selection of the second choice allomorph (36b) over the default allomorph (36a)
I3. ID-[HI] $\gg * \mathrm{M}_{2} / \mathrm{GLIDE}_{[+\mathrm{HI}]} \gg * \mathrm{M} 2 / \mathrm{GLIDE}_{[-\mathrm{H}]}$
\rightarrow general preservation of high glides (36b) over lowered glides, more harmonic as M2 (36c)

4. Central Eastern Catalan: A non-adjusting variety

- Always preservation of the glides, as M2 \& also as M1.
\rightarrow Central Eastern Catalan is a faithful variety in which the markedness constraints $* \mathrm{M} 2 / \mathrm{GLIDE}_{[+\mathrm{HI}]}, * \mathrm{M}_{1} / \mathrm{GLIDE}_{[+\mathrm{HI}]}$ and $\mathrm{VGLIDE}_{[+\mathrm{HI}], \mathrm{M} 1} \mathrm{~V}$ are consistently outranked by the relevant faithfulness constraints.
(For more, see Jiménez et al. in press.)

5. CASTILIAN Spanish: A ONE-WAY adJuSting variety

- M2: Always preservation of the glides.
\rightarrow The markedness constraint $* \mathrm{M} 2 / \mathrm{GLIDE}_{[+\mathrm{HI}]}$ is outranked by the relevant faithfulness constraints.
- M1: Always strengthening (via splitting of /w/ both in word-initial and intervocalic position; via affrication of $/ \mathrm{j} /$ in word-initial position and via fricativization in intervocalic position)
\rightarrow Word-initial M1: /j/ \& /w/ maximally reinforced. *M1/Glide ${ }_{[+\mathrm{HI}]}$ is located at the top of the ranking, crucially above the relevant faithfulness constraints.
\rightarrow Intervocalic $\mathrm{M} 1: / \mathrm{j} / \& / \mathrm{w} /$ reinforced, but not maximally. In our approach, this is due to the conjoined action of $* \mathrm{M}_{1} / \mathrm{GLIDE}_{[+\mathrm{HI}]}$ and $* \mathrm{VSTOP}_{\mathrm{M} 1} \mathrm{~V}$ at the top of the ranking as well; as a result, neither the best consonants (an affricate or a stop) nor the worst ones (glides) in M1 are available as intervocalic M1.
(For more, see Jiménez et al. in press)

6. Final remarks

- The Split Margin Hierarchy (Baertsch 2002) induces most of the variation that Catalan \& Spanish display:
\rightarrow Less sonorous segments are preferred in M1.
\rightarrow More sonorous segments are preferred in M2.
- We must consider, though, segmental strings to incorporate specific requirements affecting intervocalic onsets, where more sonorous segments are also preferred.
- The behavior of $/ \mathrm{j} /$ in Majorcan Catalan shows that the intervocalic position is not a structural version of M2, but a position with specific demands; in this case, an even lower degree of stricture than in M2 (due to $* \operatorname{VGLIDE}_{[+\boldsymbol{H I G H}], \mathrm{M1}} \mathrm{~V}$).
- In Majorcan Catalan, the effects of $* \mathrm{VGLIDE}_{[+\mathrm{HIGH}], \mathrm{M1}} \mathrm{~V}$ are so strong, that not only a process of weakening (lenition) applies, but also various processes of contextually conditioned and not conditioned deletion (at the expense of violating ONSET).

References

Baertsch, Karen (2002). An Optimality Theoretic Approach to Syllable Structure: The Split Margin Hierarchy. PhD dissertation, Indiana University.
Bibiloni, Gabriel (1983). La llengua dels mallorquins. Anàlisi sociolingüística. PhD dissertation,Universitat de Barcelona.
Bonet, Eulàlia, Maria-Rosa Lloret, and Joan Mascaró (2007). 'Allomorph selection and lexical preferences: Two case studies'. Lingua 117: 903-927
Dols, Nicolau (2000). Teoria fonològica i sil-labificació. El cas del català de Mallorca. PhD dissertation, Universitat de les Illes Balears.
Jiménez, Jesús, Maria-Rosa Lloret, and Clàudia Pons-Moll (in press). 'Adjusting to the syllable margins: glides in Spanish and Catalan’. In: Mark Gibson, Juana Gil (ed.), Romance phonetics and phonology. Oxford: Oxford University Press.
Kirchner, Robert (1998). An Effort-Based Approach to Consonant Lenition. PhD dissertation, UCLA.
Mascaró, Joan (2007). 'External allomorphy and lexical representation'. Linguistic Inquiry 38: 715-735.
Mascaró, Joan, and Joaquim Rafel (1981). 'La e intervocàlica baleàrica'. Randa 11: 3744.

Recasens, Daniel, and Aina Espinosa (2005). 'The role of contextual and prosodic factors on consonantal lenition and elision. The case of intervocalic / $\mathrm{j} /$ in Majorcan Catalan'. Journal of Portuguese Linguistics 4: 7-37.
Uffmann, Christian (2005). 'Intrusive [r] and Optimal Epenthetic Consonants'. Language Sciences 29: 451-476.

CONSTRAINT DEFINITIONS

Faithfulness constraints
ID-[PAL]: Assign one violation mark for every palatal segment in S_{1} whose ouptut correspondent in S_{2} is not palatal (see McCarthy \& Prince 1995).
ID-[LAB]: Assign one violation mark for every labial segment in S_{1} whose ouptut correspondent in S_{2} is not labial (see McCarthy \& Prince 1995).

ID-[-cons]: Assign one violation mark for every [-consonantal] segment in S_{1} whose ouptut correspondent in S_{2} is not [-consonantal] (see McCarthy \& Prince 1995).
MAX-[PAL]: Assign one violation mark for every palatal segment in S_{1} that has no correspondent in S_{2} (see McCarthy \& Prince 1995).
MAX-[LAB]: Assign one violation mark for every labial segment in S_{1} that has no correspondent in S_{2} (see McCarthy \& Prince 1995).

PRIORITY: Respect lexical priority (ordering) of allomorphs (Bonet et al. 2007: 902; Mascaró 2007: 726)

Markedness constraints

*M1/GLIDE ${ }_{[-\mathrm{HI}]}$: Assign one violation mark for every [-HI] glide syllabified as the first element in an onset (it belongs to a universal constraint hierarchy; see Baerstch 2002).
$* \mathrm{M} 1 / \mathrm{GLIDE}_{[+\mathrm{HI}]}$: Assign one violation mark for every [+HI] glide syllabified as the \rightarrow first element in an onset.
*M2/Fricative: Assign one violation mark for every fricative syllabified as the first element in a coda (it belongs to a universal constraint hierarchy; see Baerstch 2002)
$* \mathrm{M} 2 / \mathrm{GLIDE}_{[+\mathrm{HI}]}$: Assign one violation mark for every [+HI] glide syllabified as the \longrightarrow first element in a coda.

*VFRICATIVEV: Assign one violation mark for every fricative syllabified in onset position and placed in intervocalic position (it belongs to a universal constraint hierarchy; see Kirchner 1998, Uffmann 2007).
$*$ VGLIDE $_{[+\mathrm{HI}], \mathrm{m} 1} \mathrm{~V}$: Assign one violation mark for every [+HI] glide syllabified in onset position and placed in intervocalic position.

*[o]: Assign one violation mark for every glide specified as labial and [-HI] (feature cooccurrence / inventory constraint)

[^0]: * This work has been supported by the projects FFI2013-46987-C3-1-P (Spanish Government) and 2014SGR918 (Catalan Government), and it is inscribed within the research group GEVaD (http://www.ub.edu/GEVAD/).

