Overriding sonority preferences in the distribution of Catalan rhotics

Jesús Jiménez, Maria-Rosa Lloret

Research project PID2020-113971GB-C21 (www.ub.edu/GEVAD), funded by MCIN/AEI/10.13039/501100011033

SUMMARY

a) Catalan contrasts two rhotics, but only in intervocalic position: the alveolar tap [r] and the alveolar trill [r]:

pa[r]a ‘stop.IMP’ pa[r]a 'grapevine’

SUMMARY

b) The contrast is neutralized elsewhere:
. without variation:
[r]oma 'Rome', pre[r]]omà 'pre-Roman', hon[r]a 'honor'
. with variation:
po[r]ta ~ po[r]ta ‘door', co[r] ~ co[r] 'heart'

GOALS

1. To analyze the distribution of rhotics in 3 Catalan dialects:

- Algherese (Alghero, Sardinia)
- Central Catalan (eastern Catalonia)
- Valencian

GOALS

2. To show that the distribution of taps and trills is predictable from constraints related to their sonority level and their position in the syllable \& that any deviation from the expected pattern derives from the action of other constraints.

1. THEORETICAL ASSUMPTIONS

$>$ Assumed sonority hierarchy for liquids in Catalan (see, e.g., Bonet \& Mascaró 1997, Parker 2002: 233, 2011: 1177; Pons-Moll 2011):
\checkmark Tap [r]] $>$ Lateral [l] $>$ Trill [r]

1. THEORETICAL ASSUMPTIONS

$>$ The marked status of the rhotics is relative, depending on their syllabic position. According to the Split Margin approach to syllable organization (Baertsch 2002; Baertsch \& Davis 2003; Davis \& Baertsch 2011): margins can be divided into two categories:

1. THEORETICAL ASSUMPTIONS

\checkmark Margin 1 (M1: a singleton onset, the first element of a complex onset and the second element of a complex coda)
\checkmark Less sonorous elements preferred:

- ${ }^{*} \mathrm{M} 1_{\text {Tap }} \gg{ }^{*} \mathrm{M} 1_{\text {Lateral }} \gg{ }^{*} \mathrm{M} 1_{\text {Trill }}$

1. THEORETICAL ASSUMPTIONS

\checkmark Margin 2 (M2: a singleton coda, the second element of a complex onset and the first element of a complex coda).
\checkmark More sonorous elements preferred:

- ${ }^{*} \mathrm{M} 2_{\text {Trill }} \gg{ }^{*} \mathrm{M} 2_{\text {Lateral }} \gg{ }^{*} \mathrm{M} 2_{\text {Tap }}$

1. THEORETICAL ASSUMPTIONS

$>$ Furthermore, in intervocalic M1 there is also a cross-linguistic preference for more sonorous elements as well (see, e.g., Uffmann 2007, and for Catalan, Pons-Moll 2011):

- *VM1 $\mathrm{V}_{\text {Trill }} \gg$ *VM1 $\mathrm{V}_{\text {Lateral }} \gg \mathrm{VVM}^{2} \mathrm{~V}_{\text {Tap }}$

1. THEORETICAL ASSUMPTIONS

$>$ Underlying representations:
\checkmark Intervocalic trills: lexically marked, as /r/ (under richness of the base, other options are possible).
\checkmark All other rhotics: /R/, underspecified for the trill-tap distinction.

2. CONTEXTS WITHOUT VARIATION

-General facts about the distribution of rhotics in M1: The trill [[r] is almost the exclusive solution, due to different conditionings:

2. CONTEXTS WITHOUT VARIATION

$>$ Rhotics in the first position of an onset (M1) are generally realized as [r], given the preference for trills in M1.
$>$ Driving force: Sonority-related constraints ($\left.{ }^{*} \mathrm{M} 1_{\text {Tap }} \gg{ }^{*} \mathrm{M} 1_{\text {Trill }}\right)$.

- [r] $]$ oma 'Rome' hon[r]a 'honor'

2. CONTEXTS WITHOUT VARIATION

$>$ Root-initial rhotics (M1) are always maintained as [r]], even intervocalically: uniformity effects, stronger at the left edge of the root.
$>$ Driving force: OO-Faithfulness(left).

- pre[r]]omà 'pre-Roman'

2. CONTEXTS WITHOUT VARIATION

>Underlying intervocalic trills surface as [r] in all dialects.
>Driving force: IO-Faithfulness.

- pa[r]a 'grapevine'

3. CONTEXTS WITH VARIATION

3. CONTEXTS WITH VARIATION

$>$ General facts about the distribution of rhotics in intervocalic M1 \& all M2:
\checkmark Emergence of trills:
\checkmark Central Catalan presents a trilll [r] in some contexts in which Valencian exhibits a tap;
\checkmark Algherese enlarges even more the environments in which a trilll [r] may appear
$\checkmark \rightarrow$ alternative constraints are at play.

3. CONTEXTS WITH VARIATION

$>$ General facts about the distribution of rhotics in intervocalic M1 \& all M2:
\checkmark Hence, there is an inclusive relationship between dialects: e.g., for the trill:

Valencian $[r] \subset$ Central Catalan $[r] \subset$ Algherese $[r]$

3. CONTEXTS WITH VARIATION

>4 contexts with a possible trilll [r] in Central Catalan \& Algherese ([r] in Valencian):

1. Preconsonantal codas
2. Final rhotics
3. Resyllabified final rhotics, intervocalically 4. Second position of an onset

3.1. Preconsonantal codas

$>$ Central Catalan $[r] \subset$ Algherese $[r]:$
\checkmark With a trill [r]] in Central Catalan, except when C2 is an approximant.
\checkmark Driving force: contextually-marked constraint demanding the coincidence in the value of the [\pm continuant] feature, based on general coarticulatory phonetic conditions, presumably universal (Recasens 1993: 178):

- po[rt]a 'door' he[rß]a 'grass'

3.1. Preconsonantal codas

$>$ Central Catalan $[r] \subset$ Algherese [r]:
\checkmark Algherese: since /b, d, g/ display stop allophones, all preconsonantal rhotics tend to be realized as trills in this context:

- po[rt]a 'door' he[rb]a 'grass'

3.2. Final rhotics

$>$ Central Catalan $[r] \subset$ Algherese $[r]$:

\checkmark Final position is regarded as intermediate in terms of prominence (Barnes 2008, Kaplan 2015). Typically, prominent positions tend to attract features that are more salient, stronger.

3.2. Final rhotics

$>$ Central Catalan $[r] \subset$ Algherese $[r]:$

\checkmark Driving force: alignment of segmental prominence \& positional prominence. Hence, trills can be preferred in that position, just in especially strong syllables (stressed syllables: Central Catalan)...

- co[r] 'heart' Sàsse[r] 'Sassari'

3.2. Final rhotics

$>$ Central Catalan $[r] \subset$ Algherese $[r]$:

$\checkmark \ldots$ or in all final syllables, without prosodic limitations (Algherese):

- co[r] 'heart' Sàsse[r] 'Sassari'

3.3. Resyllabified final rhotics, intervocalically

>Only Algherese:
\checkmark Realized as taps in general Catalan.

Central Catalan:

- co[r] 'heart' co[r] obert 'open heart'

3.3. Resyllabified final rhotics, intervocalically

>Only Algherese:
\checkmark In Algherese they surface as trills due to the activation of uniformity effects referred to the right edge of the word.
\checkmark Driving force: OO-Faithfulness(right).

- Algherese:
- co[r] 'heart' co[r] obert 'open heart'

3.4. Second position of an onset

>Only Algherese:
\checkmark The emergence of a tap [r] in general Catalan is in line with the preference for more sonorous segments in M2.

- Central Catalan: t[r]enta '30’

3.4. Second position of an onset

>Only Algherese:
\checkmark The trilled pronunciation in Algherese is possibly an overgeneralization of the realization of rhotics in other non-contrastive contexts.

3. CONTEXTS WITH VARIATION

3. CONTEXTS WITH VARIATION

3.4. Second position of an onset

>Only Algherese:
\checkmark The trilled pronunciation in Algherese is possibly an overgeneralization of the realization of rhotics in other non-contrastive contexts.
\checkmark Driving force: Consistencr ${ }_{\text {Rhotic }}$: " A rhotic always has the same output":

- Algherese: t[r]enta ~ t[r]enta ' 30 '

4. LIQUID NEUTRALIZATION IN ALGHERESE

> Algherese presents liquid neutralization in 3 contexts in which more sonorous elements are preferred:

1. Intervocalically
2. In the second position of an onset and 3. In internal preconsonantal codas.

4. LIQUID NEUTRALIZATION IN ALGHERESE

\checkmark Intervocalically \& in the second position of an onset, the outcome of neutralization is a tap [r]. This result is just another instance of sonority adaptation to the syllable margins: a tap [r] is more harmonic than a lateral [I].
\checkmark Driving force: sonority-related constraints (${ }^{*} \mathrm{~V} / \mathrm{M} 1 \mathrm{~V}_{\alpha}$ \& * $\mathrm{M} 2_{\alpha}$ rankings).

- ma[r]a 'bad.F' (cf. ma[l] 'bad.M')
- $\quad \mathbf{p}[r]$ at (but also $\mathbf{p [r] a t) (c f . ~ g e n e r a l ~ C a t a l a n ~ p [l] a t ~ ' d i s h ') ~}$

4. LIQUID NEUTRALIZATION IN ALGHERESE

\checkmark Preconsonantally, liquids are neutralized as a lateral [I]. Although a tap [r] is preferred in M2, this outcome is altogether banned from preconsonantal codas in Algherese. Hence, the second-best segment in terms of sonority, that is, a lateral [I], is selected.
\checkmark Driving forces: sonority-related constraints (\& contextuallymarked constraints): a lateral [I] is more harmonic than a trill [r]:

5. CONCLUSIONS

$>$ Predictable variability: Catalan dialects provide rich evidence for the variability of rhotics. The attested variation is far from random: e.g., there is an inclusive relationship between the contexts in which trills can appear, in the order Valencian \subset Central Catalan \subset Algherese.

5. CONCLUSIONS

$>$ Adaptation to the syllable margins: The realization of rhotics in Catalan mainly stems from sonority-related segmental preferences in the syllable margins, with trills generally preferred in M1 and taps preferred in M2 and in intervocalic M1.

5. CONCLUSIONS

>Additional constraints: Leaving aside the intervocalic contrasting trills (for which some kind of underlying specification is needed in all dialects), any deviation from these tendencies derives from uniformity, contextually-marked or prominence-driven constraints taking precedence over sonority conditions.

References

- Baertsch, K. (2002). An optimality theoretic approach to syllable structure: The split margin hierarchy. Indiana U dissertation. - Bonet, E. \& Mascaró, J. (1997). On the representation of contrasting rhotics. In F. Martínez Gil \& A. Morales Front (eds.), Issues in the phonology and morphology of the major Iberian languages, 103-126. Washington: Georgetown U Press. - Cabrera-Callís, M. (2014). Morphologically conditioned intervocalic rhotacism in Algherese Catalan. An account with lexically indexed constraints. In M.-H. Côté \& E. Mathieu (eds.), Variation within and across Romance Languages: Selected papers from the 41st LSRL, Ottawa, 5-7 May 2011, 63-76. Amsterdam/Philadelphia: John Benjamins. • Parker, S. G. (2011). Sonority. In M. van Oostendorp, C. J. Ewen, E. Hume \& K. Rice (eds.), The Blackwell companion to phonology, 1160-184. Oxford: Blackwell. • Pons-Moll, C. (2008). Regarding the sonority of liquids. Some evidence from Romance. 38th Linguistic Symposium on Romance Languages, U of Illinois, April 2008. Pons-Moll, C. (2011). It is all downhill from here: a typological study of the role of syllable contact in Romance languages. Probus, 23, 105-173. - Recasens, D. (2014). Fonètica i fonologia experimentals del català: Vocals i consonants. Barcelona: Institut d'Estudis Catalans. - Recasens, D. \& Espinosa, A. (2007). Phonetic typology and positional allophones for alveolar rhotics in Catalan. Phonetica, 63, 1-28. Uffmann, C. (2007). Intrusive [r] and optimal epenthetic consonants. Language Sciences, 29, 451-476.

This work is part of the research project I+D+i/PID2020-113971GB-C21, funded by the Spanish MCIN/AEI/10.13039/501100011033. It is also supported by the Catalan Government (2021SGR01084) and Universitat de València (GIUV2013-137)

ALGHERESE: INTERVOCALIC RESYLLABIFIED TRILLS

- terce[r] any 'third year'

ALGHERESE: TRILLS IN THE 2ND POSITION OF AN ONSET

- t[r]enta-u '31'

